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Abstract—The electronic system packaging community has speed and power inputs). Systems models are the only way
a great need to reduce the size of its heat transfer simulations that we can do this rationally. Hence, at the very least, our
fn%“tjgit aﬁj dﬁf}ggasl'?ﬁ;@%ﬁaﬁgﬂeﬁgﬂﬁz rg?]:jeir%%%egxitssfgﬁi?ysy models should provide a capability to combinatorialy search
to search the electronic systems packaging design space. Asidéhe parameter space: we should be able .toiset the pa.ramet_ers,
from further improvements in machine speed and numerical 'Un our model, and observe the results. This is not possible with
algorithm efficiency, this is basically a question of model reduction big models. For example, if we have a simulation that takes one
and experimental identification: one would like to know how to day to run, we have 10 parameters that we are interested in,
dramatically reduce the size of heat transfer simulations when each parameter can take on five Va|ueS, and we want to search
they are available, and one would further like to identify models just 1% of the design space: that would t6(|5é0 x 1)/100
directly from experiment when accurate, computationally feasible, ) . .
numerical simulations are not available (as in the case of turbulent days or 267 years. If Ol’!r modgl runs in 1 S'_ this same search
flows through complex geometries). would take 1.4 days. This is still long for design purposes, but

Fortunately, the topic of low-order modeling for design has been at least it is reasonable.
widely studied and successfully applied in other fields (mostly in Second, as our models get smaller, we can apply far more
control engineering and fluid dynamics, although also in struc- - anajysis and design tools (see Fig. 1). These tools serve to guide

tural mechanics, chemical deposition, heat transfer and combus- - - . -
tion). Specifically, there are thousands of papers on the mathemat- us through the parameter design space by identifying critical pa-

ical techniques of model reduction and experimental system iden- Fameters, and by providing an understanding of the parameter
tification. This paper gives a brief overview of these techniques, it inter-dependencies. If our model has 10 internal states and five
suggests how these tools might be effectively used for electronic sysparameters: we can examine the equilibrium behavior, check
tems including cases that involve unsteady fluid dynamics, and it stability, analyze the forced response, find limit cycles, compute
stlhmmfar;(zjes_lg,rc])me ofthe reldgced-order TOde.l'r.‘? Ilessolr(1§ Iearr:jecil Nchaotic attractors if they exist, and perform global optimizations
orer 1ees: 1 1e Papsine ices some of our Itial work 11 MO%e’ “such as branch-and-bound. If, instead, our system has 100 000

reducing the unsteady heat conduction equation, a result on com- * ; ’
ponent model inter-connections, and an outline of a systems level internal states, we cannot do any of these things—even if the

model for an air cooled personal computer. model can be simulated in seconds on a super-computer. This is
Index Terms—Cooling, electronic systems, experimental system pecaqse the Computatlon tlme associated with finding a t?'f“rca'
identification, model reduction. tion diagram, or with computing a branch-and-bound optimum,

scales exponentially with model size and the required computa-
tion is not feasible for larger models.
I. MOTIVATION Finally, the process of creating low-order models forces

HIS paper is aimed at creating compact models of corflie researcher to isolate and quantify the dominant physical

plex electronic systems. The basic motivation is the fomechanisms. This invariably leads to a better understanding

lowing: for system design, small not-so-accurate models a¥gthe system behavior, and it usually reveals effective design

more useful than large accurate models. This sweeping st#t@cisions that would not have been identified through numer-
ment is, of course, overly simplistic, but it is nevertheless coi¢al simulation, experimentation, or “black box” optimization

rect in the following ways. methods such as neural networks and genetic algorithms. This

Design (especia”y pre"minary design) is all about Choosiﬁacreased Understanding is the most valuable benefit derived
system parameters (SUCh as Ch|p geometries and posmdﬁy,n low-order mOdeling efforts, but, it is also the benefit that

cooling channel shapes) and operating ranges (such as ifahardest to convey to skeptical researchers (primarily because
it cannot be quantified in any way). To illustrate this last point,

Manuscript received January 16, 2002; revised December 1, 2002. This wwé will just point out two examples: insights from the low-order
was presented in part at Thermal Challenges in Next Generation Electronic - '

tems Conference (THERMES 2002), January 13-16, 2002, Santa Fe, NM. TH@0re—Greitzer 3-state model [1] have enabled design avoid-
work was recommended for publication by Guest Editor C. J. Lasance upance and practical nonlinear control (the system is linearly

evaluation of the reviewers’ comments. o ersity Uncontroliable) of surge and stall in jet-engine experiments [2];

MTh? agthco r|||s Wltg thke EA%)azrgn;igtstﬁemSpace Engineering, University fhe understanding captured by the low-order combustion model
aryland, College Park, s . s X X .
Digital Object Identifier 10.1109/TCAPT.2002.807991 [3] has enabled limit cycle control in practical combustion
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tools [6], [7].
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Fig. 1. Model size versus model accuracy tradeoff: we desire sme
sufficiently accurate models.

rigs [4]. These practical results would not have been possit
without the insights gained from low-order modeling.
Hence our goal in this paper is two-fold. First, we give a broe...

(and mcomplete) overview of the available model reduction al}ﬁjg 3. Partitioning a finite volume or finite element simulation into arbitrary

experimental system identification techniques. Second, We Pfggions. This is just a matter of keeping track of all the region boundary node
vide an indication of how these methods can be used to creatiges: all states stored at the internal boundaries of a region act as outputs to

compact models of electronic systems. We stress that these tGB)& regionse), all nodes just outside the region act as inut If desired,
lected temperatures inside the region can also be listed as outputs (so as to

o ; . . S
can aid in the compaF:t modeling eﬁqrt e'_']V|S|0ne_d in [5], anl@fonitor hot-spots). Power input rates to a chip can be listed as inputs. There is
they should be especially useful for situation that involve come error, approximation, or assumptions associated with this partitioning.

plex fluid dynamics.

3) There exists a wide array of tools aimed at analyzing
1. COMPONENT INPUT/OUTPUT MODEL REDUCTION and designing the performance of such interconnected

APPROACH input/output maps.

. . . The component inter-connection structure is usually rep-
Control engineers spend a great deal of time hooking up com- N . N o .
. e . resented by “block diagrams” as shown in Fig. 2, and, given

ponents and analyzing/designing the resulting system behavior, L 2
. a description of the individual or component models, the
It turns out that the most natural way to approach this problem

is to view each component as a dynamic inputoutput m resulting system performance can be analyzed completely for

. . . "Aiear input/output blocks [6], [7], and partially for nonlinear
Here each component model receives time-varying multi-di-
Input/output maps (see for example [8], [9]).

mensional information from all the surrounding components, , S .
o . ) . ; Hence our first recommendation is that the electronic systems
this input along with the internal dynamics causes a continyal : . o
oYV—order modeling problem be couched in this input/output

change in the internal states, the resulting multi—dimensior]%shion_ Accordingly, we discuss how to create compact com-

time-varying component output is then an instantaneous funC_nent input/output models from finite element simulations in

tion of these dynamic internal states. This same framewogg : . . .
. . . . ection II-A and from experiment in Section II-B.
is also natural for electronic systems: we would like to have

dynamic input/output compact maps for each component, ard creating Compact Input/Output Component Models From
then have the ability to inter-connect these maps to arrive g@hite Element Simulations

systems level compact models. As an example: for a solid chip
model, the inputs would correspond to the temperature or heaf Order to get the full (unreduced) component mode)$s)
fluxes from the surrounding environment; the dynamic interncol?':'g' 2, we can either create a dedicated finite element simula-
states would correspond to a representation of the inter8f for thatcomponent, or we can take an existing finite element

temperature field; and the outputs would be space and tirﬂénu'ation of the type used in [10] and can partition this sim-
dependent heat fluxes out of the chip ulation into component blocks as shown in Fig. 3. Either way,

The are three key points here. this yields a large, but finite, dynamic input/output map for each

1) Any systems can be broken up in this fashion. solid component or chosen fluid region
2) There is no error or approximation associated with this . &= f(z, u) ¢
split: it is simply a convenient point of view. y(t) = y = h(z, u) = u(t)

)
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Here,(f, h) corresponds to a discretization of the underlyingto
heat transfer PDE’s as written in [10@]js the internal state in the
region (thevalue ofallvariables atallnoded)stsalltheinputsto
theregion (variables atimmediately adjoining nodes if we follow
the convention shown in Fig. 3, or we can also think of this as i#th dim(#) < dim(z). In order to find the reduced-order ma-
comingfluxes, plusanyinputsduetopowerratesintothechip), afi¢es A, B, C, D one first computes a transformation matrix
y lists all the system outputs (boundary nodes or outgoing fluxes= 7'z that orders the internal states from most to least partic-
plus any additional variables that we may wish to observe).  ipation in the input/output behavior. Some statgs the linear

It is the dimension of the internal state variabléhat we are input/output map will be affected greatly by the inputg), but
trying to reduce in equation (1). So for each componentwe desi¥él not be clearly visible. Other states will be greatly visible,

areduced-orderme([f./ }]) thathasthe sameinpuandoutpuy  but will not be affected greatly by the input. What counts is the
magnification of the input to each mode, times the amount of

visibility, divided by the damping of that mode—this gives the

i = A%+ Bu

TORS e PO RS

y(t) < F : i{g Z” = u(t) net participation of that mode in the input/output behavior of

3_/ o the linear map. The matriX’ orders the modes in decreasing

’ T = f(z, u) ; @ order of input/output importance; it does so by diagonalizing

- )= y = h (%, u) < u(t) and matching the controllability and observability Grammians

[6]. This process is called balancing the system. To arrive at a
but with a dramatically reduced number of internal stateeduced-order model one truncates the modes of lesser impor-
(dim(7) < dim(z)), that provides essentially the saméance in the input/output map, so= trunc(z), to arrive at a
dynamic input-to-output behavior. [The analogy here is thisnodel of any desired dimension.
consider a drum where the input is the hand striking the surfaceBalanced truncation model reduction has the following prop-
[so a complex input], and the output is the instantaneoasties.
displacement of the drum at each point in space [a complex1) The method is globally optimal [24]. A 5th order balanced
output]. A low order input/output model would represent the  truncation model is the best possible 5 dimensional re-
internal states of the drum by the amplitude and phase of the  duced-order model in the sense that it globally minimizes
first few fundamental drum modes. Even the first few modes  the model reduction error transfer function in the infinity
will adequately recreate the input/output behavior. This is true  norm.
because these modes are the natural (i.e., dominant) modeg) Balanced truncation includes a rigoraugriori model-
of the drum. The key model reduction step, therefore, is to  reduction error bound [6], [25]. The error between the
find a judicious set of modes onto which the dynamics may  output based on the original systgm= Gu, and the
be projected. This is exactly what model reduction techniques  output based on the reduckdiimensional syster@,, is
endeavor to do.] bounded agy(t) — yi(t)||2 < e(k)||u(t)||2 for any input

A review of various methods of model reduction for linear u(t) and for any initial conditions. Here = 2(o%41 +
systems and their application to the design of a suitable con- 4,5, + --- + 0,) is the sum of the truncated singular
troller for the original system can be found in [11]. Techniques values ofG.
for Pade approximation (another model reduction technique)3) We can aim the reduced order model at any desired fre-
and an extensive bibliography on the topic can be found in [12].  quency range. So if we are interested in transients that
As an example of a concrete application, the modeling and con-  have a 5-30 Hz content, we can generate a reduced-order
trol of transitional and turbulent shear flows can be found in model that is focused on this frequency range.

[13]. A partial overview of model reduction techniques can also 4) Balanced truncation reduced-order models can be com-
be found in the following references: [14]-[23]. Below, we out-  puted for models with up to thousands of states [26], [27].
line two specific techniques that can achieve dramatic reduc-  Hence it is possible to reduce some FEM input/output
tions in model siz€ f, h) of equation (1). component models directly using balanced truncation.

Balanced Truncation Model Reduction [6Balanced trun-
cation is aimed at large linear input/output models where
f(z, w) = Az + Bu, y = g(x, u) = Cz + Du. Hence it ap-

The method is most suited to solid components or fluid
regions that have only weak nonlinear terms, or those
components that can be accurately linearized about an

plies to components whose internal behavior is linear or almost  operating point (so cases with radiation are appropriate).
linear (e.g., solid components where conduction is dominant),  The method is not suited to cases that include highly
but it can also be applied successfully to nonlinear maps if the  nonlinear fluid dynamic effects.
underlying modes do not change appreciably as the states dgsroper Orthogonal Decomposition (POD) [28]The advan-
viate away from their nominal settings. tage of POD model-reduction is twofold: first, it is aimed specif-
The goal of balanced truncation is to replicate the sam@ly at nonlinear situations; second, it has been demonstrated
input/output behavior of a linear transfer function with fagy work superbly in complex fluid dynamic systems [28]-[30].
fewer internal states. Thereby, it seeks to transform POD methods have been shown to reduce RANS or LES turbu-
lent simulations from millions of internal states down to 5 or 10
modes with only a 5 or 10% loss in accuracy [29]. The method
works directly from simulation data: one runs the desired FEM

& = Az + Bu
y(t) <= [y =Czx+ Du} = u(t)
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varying inputs u(f) to | di Find P that minimizes
model and experiment J y=H(xu,P) difference between
"‘ computed and measured
— output: min|ly(t,P)-z(1)||
» EXPERIMENT »>
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Fig. 4. Experimental system identification aims to find unknown model paramBtéxs minimizing the error between the input/output behavior of a model
and the input/output behavior of a carefully instrumented experiment. Raran be a set of unknown coefficients, the discretization of an unknown nonlinear
curve, or the parameters of a linear or nonlinear transfer function. The optimization is usually solved using some variant of (linear or nadireadagcent
techniques, least squares regression techniques, or black box methods such as genetic algorithms and neural networks.

simulation enough times to generate a statistically represeritientification problem can be phrased as an optimization.
tive sample of data, POD then finds the low-order subspace ti@rie phrases a cost functidP) = minp ||y(t, P) — z(t)]|
most closely approximates this data in the 2-norm sense, that reflects the error between the experiment and the model,
full dynamics are then Galerkin projected onto this subspacednd then an optimization problem is solved to find the set
create the low-order input/output model. POD retains most of parameters that minimize this cost. The crucial question
the desirable properties of balanced truncation: it is optimal with whether this optimization is tractable. If the experimental
reduction-error bounds (although now in a statistical sense), asydtem behavior is linear, the model has a small number of
since it can be applied in the frequency domain [31] it can be frenknowns Py, P, ..., P,,, and the experiment provides a
guency weighted to focus on the desired frequency range. large set of clean data for many experimental inputs),
POD is the preferred method of choice for reducing conthen the answer is almost certainly yes. If the experimental
plex fluid simulations, especially those involving turbulencesystem exhibits strongly nonlinear behavior, the model has a
It can be used in concert with locally averaged fluid equatiotgrge number of unknowng?, Py, Ps..., Pigo, ..., P,
(one could first apply the method of Reynolds Averaged Navidte data is noisy, and the inputgt) are limited, then the
Stokes [32], and then apply POD to the RANS equations), bamswer is most likely no. There are continual research efforts
it provides more detailed results than methods which averageextend the efficacy of system identification methods to
the fluid dynamics over large (nonlocal) domains. For examplerger models, more unknown parameters, and more strongly
if the flow between heat sink fins is being considered [33], theronlinear behaviors. For an overview of system identification
instead of averaging over an analytic “developing channel flowtols see [24], [35], [37]-[41]..
solution, POD will average over a small set of optimal numer- Systemidentification has enabled low-order modeling of com-
ical basis functions. This will give more accurate results in caspkex systems when it has been directed at the specific, dominant,
where the flow field is not close to an analytically known soluanknown physical effects. For example, in the case of pre-mixed
tion. For recent successful applications of POD techniques seenbustion [3], experimental identification was used to identify
[29], [30], [34]. thetime-delayed nonlinear pressure-to-heat-release input/output
map. When this map was combined with a low-order model of
B. Creating Low-Order Input/Output Component Models  the chamber acoustics derived from CFD, the resulting system
From Experiment modelallowedthe designandimplementationofalimitcycle con-
gr_oller in practical combustion rigs [4]. For the case of convective
sary when accurate FEM simulations are not feasible. Tfﬁgoling in_laptops_and desktops, th_e recent paper by Bgc_:hmayer
might be because FEM simulations cannot resolve the physi% ?I' [42]is e;pemally rglevapt. Th|§ paper shows h‘?V.V ItiS pos-
le to experimentally identify the lift and drag coefficients of a

as is the case in many turbulent flow scenarios, or it can be h di ter). Th ltina 3 stat del of th i
case because a particular component is so complex that it ma@é‘s( ere used in water). The resulting 3 state model of the motor

more sense to identify its behavior experimentally than v, hamics (known), and the fan dynamics (model completed by

simulation, as might be the case for two-phase cooling devic e experimentally identified lift and drag coefficients), accu-
' rately predicts the steady state and transient flow velocities out

(There are many instances where first principle modeling i the fan. This t t modeling is th st dqt
impractical, but the experimental system identification proble €fan. This type ol modeling 1s the next step as compared to
steady-state fan curve fitting models available in ICEPACK

is straightforward—for example, the solar-heated house syst
identification problem in [35], [36].) In both scenarios above’ FLUMECAD software.
experiments should be employed to identify the missing parts
of the system model.

Like model reduction, system identification is an intensely
studied field in its own right [3], [24], [35], [37]-[40]. System In Figs. 5 and 6 we show how balanced truncation [6] can
identification works essentially as shown in Fig. 4. Any systeilme used to decrease the size of a time-varying conductive heat

Experimental system identification methods will be nece

I1l. EXAMPLE: 2-D UNSTEADY CONDUCTION MODEL
REDUCTION BY BALANCED TRUNCATION
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details), but it is also fits perfectly into the frequency weighted
ql@® | @20 | 30 | q4® gN(t) = spatially uniform  model reduction tools developed in [25], [44]
time varying heat source

a5 | q6(t) | q7() | q8(D) L IV. PUTTING IT ALL TOGETHER

plate has adiabatic

boundary conditions on Above we have discussed model reduction and experimental
Q9@ | qlo@ | ql1®) | ql2() all sides system identification tools, and have also illustrated how the

input/output framework can be used to unravel model inter-con-
nection issues. In this last section, we discuss how the tools

Fig. 5. Example geometry: a rectangular plate described by the heat equafigioye might be integrated to create compact models of com-
(conduction only) with insulated edges, and with 12 time-varying heat sources.

Each source covers one of the 12 squares shown, is constant in space, bup\igﬁ e!eCtroniC systems. )
vary in time. The sources are as followg = sin(67t), ¢3 = 0.3-0.07¢, In Fig. 8 we show a schematic of a desktop personal computer.

g4 =2 cos(14nt), g5 = 0.2exp(1/10),49 = —1.5(t —6) fort > 6 andis | order to make design decision, we basically need to know how
zero otherwise, andl0 = 2 for ¢ > 7 and is zero otherwise. At time= 0, . . .
the plate is at a uniform temperature. todirectthe airflow, and howmuch heatis generated and removed
at critical components. So we desire the smallest possible system
) . ) . model that might be able to answer such questions.
transfer simulation by a factor of 5 with only a 5% resulting The conceptual flow of the desired compact system model
system error. . Y o _ might then have the framework shown in Fig. 9. This figure il-
Here each “block” in the plate is V|ew_ed asan INpUtoUtPylsyrares how itis possible to split the electronic system behavior
component model where the local (time-varying) extemgli, 5 set of dynamic input/output models. Starting at the top
heating plus the temperature values from adjoining blocks i he fan speed largely determines the fluid velocity field in
treated as a vector input, and the temperature at the inSifle's, stem, but this velocity field can also depend on heat fluxes
boundary of the current block is treated_as a vector output. 0) Enerated by the chips and circuit boards (especially when the
can compute balanced truncations for linear models with upaR, is off), hence the velocity map receives these two inputs.
thousands of states [26], [27], hence the current 2-D blocks Wit e gynamic velocity map is a spatially rough representation of
576 elements each are within easy reach. For linear systegs, q,iq dynamics, it resolves the fluid dynamics down to cm,
model reduction guarantees arigorous upper bound on the egpf,avhe mm, length-scales. This part of the model outputs a
between the original and reduced model. Here the error in eag{)ia|y averaged velocity (and temperature) field that captures
block is be_low 2% for any time-varying external heating INPUlpe path of the fluid over the chips but it makes no attempt to re-
The resulting system error, after all the reduced componeliy e the fine scale flow features. The heat carried away by con-
models are inter-connected, is about 5% (see Fig. 6). vection is then given by an empirically determined heat transfer
_ o relation: at chip 13, averaged velocity, temperature, i¥’, so
A. Example of the Type of.ResuIts Possible Within the heat convected away is = F(v, T). This is done for each
Input/Output Model Reduction Framework chip. Now that the convective fluxes are known, it only remains
The example above illustrates a salient point, and it also p&p-solve the conduction/radiation heat transfer in the solid. This
mits a demonstration of why model reduction techniques wite done to low-order by the balanced truncation model. (If the
known properties and known tuning knobs are far more usefubnlinear radiation effects are significant, one can replace this
thanad-hoctechnigues. The central question above is: How doy a POD model that captures nonlinear radiation effects more
component model reduction errors build up to give system execurately.) If necessary, this model can also be coupled to a
rors? And how can we create a library of low-order componeoold-plate balanced truncation or POD model. To complete the
models that, when inter-connected, will minimize systems leviglop, convective heat fluxes go to the reduced-order fluid model.
model reduction errors? One can pull out any desired system output: here the chip tem-
It is possible to answer this question (for stable linear corperatures at any given set of points is being observed.
ponent models inter-connected in a stable manner) by extendinghe solid chip and cold plate input/output models will be
the basic controller reduction result found in [43]. The answer éseated by balanced truncation: each chip will have incoming
interesting and physically intuitive, hence we suspect that it wiluxes as inputs, and outgoing fluxes as outputs; selected chips
extend to nonlinear systems in some fashion. In order to buildll also output their temperatures for observation purposes.
accurate system level models from component reduced-ordée turbulent flow field reduced-order model will be created in
models, one must ensure that the component models are acne of three ways: by reducing a full scale turbulent simulation
rate at the resonant frequencies of the full system (see Fig. thiyough POD, by creating a low-resolution (cm length-scale)
Basically, compact models for each component need only cdiow simulation, or by a flow visualization experiment. This
ture dynamics at those frequencies that will show up in the futiodel will not attempt to resolve the fine scale turbulence, but
system. So if the entire laptop has dynamics in the 5-50 Kll only give a broad indication of the path and velocity of the
range, itis unnecessary to resolve turbulent flows at the 200—408v over each chip. The convective heat transfer caused by the
Hz range—such high-frequency dynamics will simply not shoturbulent flow field will then be captured by the experimentally
up in the final system. Hence any reduced fluid-region modelentified “local averaged velocity” to “local heat flux” map. It
need only be accurate in the 5-50 Hz range. Not only is this Enthis experimentally identified map that will capture the de-
easier model reduction question (we can ignore high-frequenrtajls of the turbulent flow heat transfer mechanisms. Since these
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Full Simulation: 6312 state variables Reduced Model: 1380 state variables

time t = 2.3335

time t = 4.6668

time t = 7.3335

1 2 3 1 2 3

Fig. 6. Temperature field snapshots for a conducting plate divided into “blocks,” each block is heated by a time-varying but spatially unifarfrhedefte
snapshots show a full simulation with 6912 free variables. The right snapshots show results generated by connected reduced-order modelsevithr iBBSEsfr
total. Model reduction for each block is optimal, and the error per block is guaranteed to be less than 2% for any time-varying heat input. Th\dgtdera$
level error. (The error is defined as the infinity-norm of the full transfer funafioinom all inputs [the heating sources] to all outputs [the temperature field] minus
the reduced transfer functiafi,, from the same inputs to the same outputs: ||G — G| )

o

|Gfan(iw)| |Gehip(iw))|

Inlet Cooling Fan

Exact transfer
(Gfluid(iw)|  function (TF)

Reduced
model TF

= =

w w

Component transfer functions ...
.. enlire system transfer function.

|Gsystem(iw)|
r 1118y
aa\ i 1
i W - Exhaust Vent
Cold-plate

Fig. 8. Typical forced air cooling application (desktop personal computer).
Heat is generated in essentially three key places. Arrows represent the direction
of fluid flow. At least for preliminary design purposes, and possibly even
Fig. 7. Model reducing components so as to minimize system level model more advanced uses, it should only be necessary to capture the thermal
reduction errors. The top line shows three typical components with theiharacteristics in these three regions. (Figure courtesy of Dr. Y. Joshi.)
corresponding transfer function (TF) models. (A linear input/output map

can always be uniquely represented by a transfer function.) When all of the . .

component TF's are inter-connected (bottom right) then there is a total systemOUI @ssessment is that this type of model can capture the

frequency response (bottom left). This response will have some resondgminant system dynamics, and that it will reveal the tradeoffs

modes here highlighted by the shaded rectangle. If the low-order compon. ;
models are accurate in this middle frequency range (top left, dotted lines) thae?r%e to parameters such as fan speed and chip placement. One

their inter-connection will accurately capture the full model system respon§®Uld certainly point out possible short-comings in Fig. 9. For
everywhere. example, the heat flux on the spatially average flow field might
be negligible compared to the flow field generated by the fan and
details cannot be captured by current simulations, experimerghbuld be neglected, or the empirical identified heat-transfer re-
system identification is the most reasonable approach. lation might be insufficient plus it might have large error bars,

.5” Floppy Drive
5.25” Floppy Drive

Output magnitude

Input frequency' wo
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Low Resolution Flow Solver or
Flow Visualization Experiment or
T POD reduction of RANS/LES code

speed
Spee Locally averaged

velocity+temp field
RPM LOW-ORDER DYNAMIC MAP: ﬁ
(RMP,fluxes) to (locally averaged

velocity, temp field over all components) B

Heat fluxes
to fluid

EI Convective heat flux (heat flux) = empirical
Desired output: @' cr component) law(averaged vel, temp),
< . [per component chip]
Chip Temp’s l_] 0O 3 cond to/from plate

Balanced truncation,

solid component,
heat transfer model Cold Plate

all the different geometries back to a mesh on a straight channel
by a continuous change of variables. Hence they were able to
compute their POD modes for multiple ramp angles via data
that was always transformed back to the simple channel geom-
etry.

VI. CONCLUSION

There is a strong need for compact or reduced-order models in
the electronic systems thermal management field. The required
compact models can be created in one of two ways:

a) one can take an existing large model and reduce its size
whilst keeping most of its accuracy—this process is
known as model reduction;

b) one can pick a model structure and then use an experiment

Fig.9. Putting it all together: A conceptual flow diagram for low-order system to identify the missing parts in the model—this is known

model of an electronic system with convective cooling.

as experimental system identification.
Fortunately, both techniques have been actively studied for

or there might be a missing block in the diagram. In all likelimany years, and so the electronic systems community can

hood, these, and other similar issues, will have to be addressedke use of the existing results. This paper summarizes some
Still, the key point is that it is possible to split a complexf the basic ideas behind these methods, it suggests how they

modeling problem into physical or component blocks as showmjght be applied to electronic systems, and it gives some of our

and then one can find reduced-order models for each block, anifial results in this direction.

connect these models to form a small but accurate model of

the entire system. This divide and conquer approach has been ACKNOWLEDGMENT

demonstrated for many complex engineering systems [1], [3], , ) .

[28]-[31], [34], [42], [45]-[47], and we hope to apply it suc- The author would like to thank Dr. Y. Joshi for his valuable

cessfully to electronic systems.

V. OPEN RESEARCHQUESTION. GEOMETRY AS A MODEL
PARAMETER

input on electronic system issues.
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