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Abstract—The electronic system packaging community has
a great need to reduce the size of its heat transfer simulations
so that it can: simulate and analyze more complex systems,
include additional physical phenomena, and improve its ability
to search the electronic systems packaging design space. Aside
from further improvements in machine speed and numerical
algorithm efficiency, this is basically a question of model reduction
and experimental identification: one would like to know how to
dramatically reduce the size of heat transfer simulations when
they are available, and one would further like to identify models
directly from experiment when accurate, computationally feasible,
numerical simulations are not available (as in the case of turbulent
flows through complex geometries).

Fortunately, the topic of low-order modeling for design has been
widely studied and successfully applied in other fields (mostly in
control engineering and fluid dynamics, although also in struc-
tural mechanics, chemical deposition, heat transfer and combus-
tion). Specifically, there are thousands of papers on the mathemat-
ical techniques of model reduction and experimental system iden-
tification. This paper gives a brief overview of these techniques, it
suggests how these tools might be effectively used for electronic sys-
tems including cases that involve unsteady fluid dynamics, and it
summarizes some of the reduced-order modeling lessons learned in
other fields. The paper includes some of our initial work in model
reducing the unsteady heat conduction equation, a result on com-
ponent model inter-connections, and an outline of a systems level
model for an air cooled personal computer.

Index Terms—Cooling, electronic systems, experimental system
identification, model reduction.

I. MOTIVATION

T HIS paper is aimed at creating compact models of com-
plex electronic systems. The basic motivation is the fol-

lowing: for system design, small not-so-accurate models are
more useful than large accurate models. This sweeping state-
ment is, of course, overly simplistic, but it is nevertheless cor-
rect in the following ways.

Design (especially preliminary design) is all about choosing
system parameters (such as chip geometries and positions,
cooling channel shapes) and operating ranges (such as fan
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speed and power inputs). Systems models are the only way
that we can do this rationally. Hence, at the very least, our
models should provide a capability to combinatorialy search
the parameter space: we should be able to set the parameters,
run our model, and observe the results. This is not possible with
big models. For example, if we have a simulation that takes one
day to run, we have 10 parameters that we are interested in,
each parameter can take on five values, and we want to search
just 1% of the design space: that would take
days or 267 years. If our model runs in 1 s, this same search
would take 1.4 days. This is still long for design purposes, but
at least it is reasonable.

Second, as our models get smaller, we can apply far more
analysis and design tools (see Fig. 1). These tools serve to guide
us through the parameter design space by identifying critical pa-
rameters, and by providing an understanding of the parameter
inter-dependencies. If our model has 10 internal states and five
parameters: we can examine the equilibrium behavior, check
stability, analyze the forced response, find limit cycles, compute
chaotic attractors if they exist, and perform global optimizations
such as branch-and-bound. If, instead, our system has 100 000
internal states, we cannot do any of these things—even if the
model can be simulated in seconds on a super-computer. This is
because the computation time associated with finding a bifurca-
tion diagram, or with computing a branch-and-bound optimum,
scales exponentially with model size and the required computa-
tion is not feasible for larger models.

Finally, the process of creating low-order models forces
the researcher to isolate and quantify the dominant physical
mechanisms. This invariably leads to a better understanding
of the system behavior, and it usually reveals effective design
decisions that would not have been identified through numer-
ical simulation, experimentation, or “black box” optimization
methods such as neural networks and genetic algorithms. This
increased understanding is the most valuable benefit derived
from low-order modeling efforts, but, it is also the benefit that
is hardest to convey to skeptical researchers (primarily because
it cannot be quantified in any way). To illustrate this last point,
we will just point out two examples: insights from the low-order
Moore–Greitzer 3-state model [1] have enabled design avoid-
ance and practical nonlinear control (the system is linearly
uncontrollable) of surge and stall in jet-engine experiments [2];
the understanding captured by the low-order combustion model
[3] has enabled limit cycle control in practical combustion
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Fig. 1. Model size versus model accuracy tradeoff: we desire small,
sufficiently accurate models.

rigs [4]. These practical results would not have been possible
without the insights gained from low-order modeling.

Hence our goal in this paper is two-fold. First, we give a broad
(and incomplete) overview of the available model reduction and
experimental system identification techniques. Second, we pro-
vide an indication of how these methods can be used to create
compact models of electronic systems. We stress that these tools
can aid in the compact modeling effort envisioned in [5], and
they should be especially useful for situation that involve com-
plex fluid dynamics.

II. COMPONENT INPUT/OUTPUT MODEL REDUCTION

APPROACH

Control engineers spend a great deal of time hooking up com-
ponents and analyzing/designing the resulting system behavior.
It turns out that the most natural way to approach this problem
is to view each component as a dynamic input/output map.
Here each component model receives time-varying multi-di-
mensional information from all the surrounding components,
this input along with the internal dynamics causes a continual
change in the internal states, the resulting multi-dimensional
time-varying component output is then an instantaneous func-
tion of these dynamic internal states. This same framework
is also natural for electronic systems: we would like to have
dynamic input/output compact maps for each component, and
then have the ability to inter-connect these maps to arrive at
systems level compact models. As an example: for a solid chip
model, the inputs would correspond to the temperature or heat
fluxes from the surrounding environment; the dynamic internal
states would correspond to a representation of the internal
temperature field; and the outputs would be space and time
dependent heat fluxes out of the chip.

The are three key points here.

1) Any systems can be broken up in this fashion.
2) There is no error or approximation associated with this

split: it is simply a convenient point of view.

Fig. 2. Interconnection of component models represented by a block diagram.
Each block includes dynamics and can be nonlinear. The connection arrows
can represent a tremendous amount of information [e.g., the discretized
time-varying temperature fieldT (x; t) on a component face]. The behavior of
such inter-connections can be analyzed and designed using control engineering
tools [6], [7].

Fig. 3. Partitioning a finite volume or finite element simulation into arbitrary
regions. This is just a matter of keeping track of all the region boundary node
values: all states stored at the internal boundaries of a region act as outputs to
other regions(�), all nodes just outside the region act as inputs(x). If desired,
selected temperatures inside the region can also be listed as outputs (so as to
monitor hot-spots). Power input rates to a chip can be listed as inputs. There is
no error, approximation, or assumptions associated with this partitioning.

3) There exists a wide array of tools aimed at analyzing
and designing the performance of such interconnected
input/output maps.

The component inter-connection structure is usually rep-
resented by “block diagrams” as shown in Fig. 2, and, given
a description of the individual or component models, the
resulting system performance can be analyzed completely for
linear input/output blocks [6], [7], and partially for nonlinear
input/output maps (see for example [8], [9]).

Hence our first recommendation is that the electronic systems
low-order modeling problem be couched in this input/output
fashion. Accordingly, we discuss how to create compact com-
ponent input/output models from finite element simulations in
Section II-A and from experiment in Section II-B.

A. Creating Compact Input/Output Component Models From
Finite Element Simulations

In order to get the full (unreduced) component models
of Fig. 2, we can either create a dedicated finite element simula-
tion for that component, or we can take an existing finite element
simulation of the type used in [10] and can partition this sim-
ulation into component blocks as shown in Fig. 3. Either way,
this yields a large, but finite, dynamic input/output map for each
solid component or chosen fluid region

(1)
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Here, corresponds to a discretization of the underlying
heat transfer PDE’s as written in [10],is the internal state in the
region(thevalueofallvariablesatallnodes),listsall theinputsto
the region (variables at immediately adjoining nodes if we follow
the convention shown in Fig. 3, or we can also think of this as in-
comingfluxes,plusanyinputsduetopowerratesintothechip),and

lists all the system outputs (boundary nodes or outgoing fluxes,
plus any additional variables that we may wish to observe).

It is the dimension of the internal state variablethat we are
trying to reduce in equation (1). So for each component we desire
a reduced-ordermap thathas thesame inputandoutput

(2)

but with a dramatically reduced number of internal states
, that provides essentially the same

dynamic input-to-output behavior. [The analogy here is this:
consider a drum where the input is the hand striking the surface
[so a complex input], and the output is the instantaneous
displacement of the drum at each point in space [a complex
output]. A low order input/output model would represent the
internal states of the drum by the amplitude and phase of the
first few fundamental drum modes. Even the first few modes
will adequately recreate the input/output behavior. This is true
because these modes are the natural (i.e., dominant) modes
of the drum. The key model reduction step, therefore, is to
find a judicious set of modes onto which the dynamics may
be projected. This is exactly what model reduction techniques
endeavor to do.]

A review of various methods of model reduction for linear
systems and their application to the design of a suitable con-
troller for the original system can be found in [11]. Techniques
for Pade approximation (another model reduction technique)
and an extensive bibliography on the topic can be found in [12].
As an example of a concrete application, the modeling and con-
trol of transitional and turbulent shear flows can be found in
[13]. A partial overview of model reduction techniques can also
be found in the following references: [14]–[23]. Below, we out-
line two specific techniques that can achieve dramatic reduc-
tions in model size of equation (1).

Balanced Truncation Model Reduction [6]:Balanced trun-
cation is aimed at large linear input/output models where

, . Hence it ap-
plies to components whose internal behavior is linear or almost
linear (e.g., solid components where conduction is dominant),
but it can also be applied successfully to nonlinear maps if the
underlying modes do not change appreciably as the states de-
viate away from their nominal settings.

The goal of balanced truncation is to replicate the same
input/output behavior of a linear transfer function with far
fewer internal states. Thereby, it seeks to transform

into

(3)

with . In order to find the reduced-order ma-
trices one first computes a transformation matrix

that orders the internal states from most to least partic-
ipation in the input/output behavior. Some statesin the linear
input/output map will be affected greatly by the inputs , but
will not be clearly visible. Other states will be greatly visible,
but will not be affected greatly by the input. What counts is the
magnification of the input to each mode, times the amount of
visibility, divided by the damping of that mode—this gives the
net participation of that mode in the input/output behavior of
the linear map. The matrix orders the modes in decreasing
order of input/output importance; it does so by diagonalizing
and matching the controllability and observability Grammians
[6]. This process is called balancing the system. To arrive at a
reduced-order model one truncates the modes of lesser impor-
tance in the input/output map, so , to arrive at a
model of any desired dimension.

Balanced truncation model reduction has the following prop-
erties.

1) The method is globally optimal [24]. A 5th order balanced
truncation model is the best possible 5 dimensional re-
duced-order model in the sense that it globally minimizes
the model reduction error transfer function in the infinity
norm.

2) Balanced truncation includes a rigorousa priori model-
reduction error bound [6], [25]. The error between the
output based on the original system , and the
output based on the reduced-dimensional system , is
bounded as for any input

and for any initial conditions. Here
is the sum of the truncated singular

values of .
3) We can aim the reduced order model at any desired fre-

quency range. So if we are interested in transients that
have a 5–30 Hz content, we can generate a reduced-order
model that is focused on this frequency range.

4) Balanced truncation reduced-order models can be com-
puted for models with up to thousands of states [26], [27].
Hence it is possible to reduce some FEM input/output
component models directly using balanced truncation.
The method is most suited to solid components or fluid
regions that have only weak nonlinear terms, or those
components that can be accurately linearized about an
operating point (so cases with radiation are appropriate).
The method is not suited to cases that include highly
nonlinear fluid dynamic effects.

Proper Orthogonal Decomposition (POD) [28]:The advan-
tage of POD model-reduction is twofold: first, it is aimed specif-
ically at nonlinear situations; second, it has been demonstrated
to work superbly in complex fluid dynamic systems [28]–[30].
POD methods have been shown to reduce RANS or LES turbu-
lent simulations from millions of internal states down to 5 or 10
modes with only a 5 or 10% loss in accuracy [29]. The method
works directly from simulation data: one runs the desired FEM
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Fig. 4. Experimental system identification aims to find unknown model parametersP by minimizing the error between the input/output behavior of a model
and the input/output behavior of a carefully instrumented experiment. HereP can be a set of unknown coefficients, the discretization of an unknown nonlinear
curve, or the parameters of a linear or nonlinear transfer function. The optimization is usually solved using some variant of (linear or nonlinear) gradient descent
techniques, least squares regression techniques, or black box methods such as genetic algorithms and neural networks.

simulation enough times to generate a statistically representa-
tive sample of data, POD then finds the low-order subspace that
most closely approximates this data in the 2-norm sense, the
full dynamics are then Galerkin projected onto this subspace to
create the low-order input/output model. POD retains most of
the desirable properties of balanced truncation: it is optimal with
reduction-error bounds (although now in a statistical sense), and
since it can be applied in the frequency domain [31] it can be fre-
quency weighted to focus on the desired frequency range.

POD is the preferred method of choice for reducing com-
plex fluid simulations, especially those involving turbulence.
It can be used in concert with locally averaged fluid equations
(one could first apply the method of Reynolds Averaged Navier
Stokes [32], and then apply POD to the RANS equations), but
it provides more detailed results than methods which average
the fluid dynamics over large (nonlocal) domains. For example,
if the flow between heat sink fins is being considered [33], then
instead of averaging over an analytic “developing channel flow”
solution, POD will average over a small set of optimal numer-
ical basis functions. This will give more accurate results in cases
where the flow field is not close to an analytically known solu-
tion. For recent successful applications of POD techniques see
[29], [30], [34].

B. Creating Low-Order Input/Output Component Models
From Experiment

Experimental system identification methods will be neces-
sary when accurate FEM simulations are not feasible. This
might be because FEM simulations cannot resolve the physics,
as is the case in many turbulent flow scenarios, or it can be the
case because a particular component is so complex that it makes
more sense to identify its behavior experimentally than via
simulation, as might be the case for two-phase cooling devices.
(There are many instances where first principle modeling is
impractical, but the experimental system identification problem
is straightforward—for example, the solar-heated house system
identification problem in [35], [36].) In both scenarios above,
experiments should be employed to identify the missing parts
of the system model.

Like model reduction, system identification is an intensely
studied field in its own right [3], [24], [35], [37]–[40]. System
identification works essentially as shown in Fig. 4. Any system

identification problem can be phrased as an optimization.
One phrases a cost function
that reflects the error between the experiment and the model,
and then an optimization problem is solved to find the set
of parameters that minimize this cost. The crucial question
is whether this optimization is tractable. If the experimental
system behavior is linear, the model has a small number of
unknowns , and the experiment provides a
large set of clean data for many experimental inputs ,
then the answer is almost certainly yes. If the experimental
system exhibits strongly nonlinear behavior, the model has a
large number of unknowns ,
the data is noisy, and the inputs are limited, then the
answer is most likely no. There are continual research efforts
to extend the efficacy of system identification methods to
larger models, more unknown parameters, and more strongly
nonlinear behaviors. For an overview of system identification
tools see [24], [35], [37]–[41]..

System identificationhasenabled low-ordermodelingofcom-
plex systems when it has been directed at the specific, dominant,
unknown physical effects. For example, in the case of pre-mixed
combustion [3], experimental identification was used to identify
the time-delayednonlinearpressure-to-heat-release input/output
map. When this map was combined with a low-order model of
the chamber acoustics derived from CFD, the resulting system
modelallowedthedesignandimplementationofalimitcyclecon-
troller in practical combustion rigs [4]. For the case of convective
cooling in laptops and desktops, the recent paper by Bachmayer
et al.[42] is especially relevant. This paper shows how it is pos-
sible to experimentally identify the lift and drag coefficients of a
fan (here used in water). The resulting 3 state model of the motor
dynamics (known), and the fan dynamics (model completed by
the experimentally identified lift and drag coefficients), accu-
rately predicts the steady state and transient flow velocities out
of the fan. This type of modeling is the next step as compared to
the steady-state fan curve fitting models available in ICEPACK
or FLUMECAD software.

III. EXAMPLE: 2-D UNSTEADY CONDUCTION MODEL

REDUCTION BY BALANCED TRUNCATION

In Figs. 5 and 6 we show how balanced truncation [6] can
be used to decrease the size of a time-varying conductive heat
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Fig. 5. Example geometry: a rectangular plate described by the heat equation
(conduction only) with insulated edges, and with 12 time-varying heat sources.
Each source covers one of the 12 squares shown, is constant in space, but can
vary in time. The sources are as follows:q2 = sin(6�t), q3 = 0:3–0:07t,
q4 = 2cos(14�t), q5 = 0:2 exp(t=10), q9 = �1:5(t� 6) for t > 6 and is
zero otherwise, andq10 = 2 for t > 7 and is zero otherwise. At timet = 0,
the plate is at a uniform temperature.

transfer simulation by a factor of 5 with only a 5% resulting
system error.

Here each “block” in the plate is viewed as an input/output
component model where the local (time-varying) external
heating plus the temperature values from adjoining blocks is
treated as a vector input, and the temperature at the inside
boundary of the current block is treated as a vector output. One
can compute balanced truncations for linear models with up to
thousands of states [26], [27], hence the current 2-D blocks with
576 elements each are within easy reach. For linear systems,
model reduction guarantees a rigorous upper bound on the error
between the original and reduced model. Here the error in each
block is below 2% for any time-varying external heating input.
The resulting system error, after all the reduced component
models are inter-connected, is about 5% (see Fig. 6).

A. Example of the Type of Results Possible Within the
Input/Output Model Reduction Framework

The example above illustrates a salient point, and it also per-
mits a demonstration of why model reduction techniques with
known properties and known tuning knobs are far more useful
thanad-hoctechniques. The central question above is: How do
component model reduction errors build up to give system er-
rors? And how can we create a library of low-order component
models that, when inter-connected, will minimize systems level
model reduction errors?

It is possible to answer this question (for stable linear com-
ponent models inter-connected in a stable manner) by extending
the basic controller reduction result found in [43]. The answer is
interesting and physically intuitive, hence we suspect that it will
extend to nonlinear systems in some fashion. In order to build
accurate system level models from component reduced-order
models, one must ensure that the component models are accu-
rate at the resonant frequencies of the full system (see Fig. 7).
Basically, compact models for each component need only cap-
ture dynamics at those frequencies that will show up in the full
system. So if the entire laptop has dynamics in the 5–50 Hz
range, it is unnecessary to resolve turbulent flows at the 200–400
Hz range—such high-frequency dynamics will simply not show
up in the final system. Hence any reduced fluid-region model
need only be accurate in the 5–50 Hz range. Not only is this an
easier model reduction question (we can ignore high-frequency

details), but it is also fits perfectly into the frequency weighted
model reduction tools developed in [25], [44]

IV. PUTTING IT ALL TOGETHER

Above we have discussed model reduction and experimental
system identification tools, and have also illustrated how the
input/output framework can be used to unravel model inter-con-
nection issues. In this last section, we discuss how the tools
above might be integrated to create compact models of com-
plex electronic systems.

In Fig. 8 we show a schematic of a desktop personal computer.
In order to make design decision, we basically need to know how
todirect theairflow,andhowmuchheat isgeneratedandremoved
at critical components. So we desire the smallest possible system
model that might be able to answer such questions.

The conceptual flow of the desired compact system model
might then have the framework shown in Fig. 9. This figure il-
lustrates how it is possible to split the electronic system behavior
into a set of dynamic input/output models. Starting at the top
left, the fan speed largely determines the fluid velocity field in
the system, but this velocity field can also depend on heat fluxes
generated by the chips and circuit boards (especially when the
fan is off), hence the velocity map receives these two inputs.
The dynamic velocity map is a spatially rough representation of
the fluid dynamics, it resolves the fluid dynamics down to cm,
or maybe mm, length-scales. This part of the model outputs a
spatially averaged velocity (and temperature) field that captures
the path of the fluid over the chips but it makes no attempt to re-
solve the fine scale flow features. The heat carried away by con-
vection is then given by an empirically determined heat transfer
relation: at chip 13, averaged velocity, temperature is , so
heat convected away is . This is done for each
chip. Now that the convective fluxes are known, it only remains
to solve the conduction/radiation heat transfer in the solid. This
is done to low-order by the balanced truncation model. (If the
nonlinear radiation effects are significant, one can replace this
by a POD model that captures nonlinear radiation effects more
accurately.) If necessary, this model can also be coupled to a
cold-plate balanced truncation or POD model. To complete the
loop, convective heat fluxes go to the reduced-order fluid model.
One can pull out any desired system output: here the chip tem-
peratures at any given set of points is being observed.

The solid chip and cold plate input/output models will be
created by balanced truncation: each chip will have incoming
fluxes as inputs, and outgoing fluxes as outputs; selected chips
will also output their temperatures for observation purposes.
The turbulent flow field reduced-order model will be created in
one of three ways: by reducing a full scale turbulent simulation
through POD, by creating a low-resolution (cm length-scale)
flow simulation, or by a flow visualization experiment. This
model will not attempt to resolve the fine scale turbulence, but
will only give a broad indication of the path and velocity of the
flow over each chip. The convective heat transfer caused by the
turbulent flow field will then be captured by the experimentally
identified “local averaged velocity” to “local heat flux” map. It
is this experimentally identified map that will capture the de-
tails of the turbulent flow heat transfer mechanisms. Since these
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Fig. 6. Temperature field snapshots for a conducting plate divided into “blocks,” each block is heated by a time-varying but spatially uniform source. The left
snapshots show a full simulation with 6912 free variables. The right snapshots show results generated by connected reduced-order models with 1380 free variables
total. Model reduction for each block is optimal, and the error per block is guaranteed to be less than 2% for any time-varying heat input. This yields a 5% systems
level error. (The error is defined as the infinity-norm of the full transfer functionG from all inputs [the heating sources] to all outputs [the temperature field] minus
the reduced transfer functionG from the same inputs to the same outputs:" = kG� G k .)

Fig. 7. Model reducing components so as to minimize system level model
reduction errors. The top line shows three typical components with their
corresponding transfer function (TF) models. (A linear input/output map
can always be uniquely represented by a transfer function.) When all of the
component TF’s are inter-connected (bottom right) then there is a total system
frequency response (bottom left). This response will have some resonant
modes here highlighted by the shaded rectangle. If the low-order component
models are accurate in this middle frequency range (top left, dotted lines) then
their inter-connection will accurately capture the full model system response
everywhere.

details cannot be captured by current simulations, experimental
system identification is the most reasonable approach.

Fig. 8. Typical forced air cooling application (desktop personal computer).
Heat is generated in essentially three key places. Arrows represent the direction
of fluid flow. At least for preliminary design purposes, and possibly even
for more advanced uses, it should only be necessary to capture the thermal
characteristics in these three regions. (Figure courtesy of Dr. Y. Joshi.)

Our assessment is that this type of model can capture the
dominant system dynamics, and that it will reveal the tradeoffs
due to parameters such as fan speed and chip placement. One
could certainly point out possible short-comings in Fig. 9. For
example, the heat flux on the spatially average flow field might
be negligible compared to the flow field generated by the fan and
should be neglected, or the empirical identified heat-transfer re-
lation might be insufficient plus it might have large error bars,
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Fig. 9. Putting it all together: A conceptual flow diagram for low-order system
model of an electronic system with convective cooling.

or there might be a missing block in the diagram. In all likeli-
hood, these, and other similar issues, will have to be addressed.

Still, the key point is that it is possible to split a complex
modeling problem into physical or component blocks as shown,
and then one can find reduced-order models for each block, and
connect these models to form a small but accurate model of
the entire system. This divide and conquer approach has been
demonstrated for many complex engineering systems [1], [3],
[28]–[31], [34], [42], [45]–[47], and we hope to apply it suc-
cessfully to electronic systems.

V. OPEN RESEARCHQUESTION: GEOMETRY AS A MODEL

PARAMETER

Above we have described how model reduction techniques
might be applied to electronic systems. However, there are is-
sues raised by electronic systems that are beyond the capabilities
of current model reduction techniques. The most critical of these
is geometric variations. Basis modes are computed for a specific
geometry, hence it is not clear how to effectively parameterize
the change in basis functions with geometry changes so as to
arrive at a reduced-order model that includes geometric varia-
tions. (In terms of the drum analogy we used in Section II-A,
if we change the shape of the drum then we have changed the
fundamental modes used to create the reduced-order model.)

There are a number of possible work-arounds. The most
straight-forward solution is the one we have been implicitly
using up till now: we divide the geometric space into a set
of blocks, derive reduced order models for each block, and
then swap the positions of blocks so as to represent different
placements of chips, fans, and cold-plates. This allows us to
capture discrete changes in geometry, and it relies on each
reduced-order block model having an accurate input/output
connection to any of a number of neighbors it might see.

If, instead, the geometry changes continuously, we can inter-
polate between multiple reduced-order models to create a single
model that includes geometric variations. This leads to a (diffi-
cult) function fitting problem.

An alternate approach is provided in [48]. The authors con-
sidered a 2-D diffuser with a varying ramp angle. They mapped

all the different geometries back to a mesh on a straight channel
by a continuous change of variables. Hence they were able to
compute their POD modes for multiple ramp angles via data
that was always transformed back to the simple channel geom-
etry.

VI. CONCLUSION

There is a strong need for compact or reduced-order models in
the electronic systems thermal management field. The required
compact models can be created in one of two ways:

a) one can take an existing large model and reduce its size
whilst keeping most of its accuracy—this process is
known as model reduction;

b) one can pick a model structure and then use an experiment
to identify the missing parts in the model—this is known
as experimental system identification.

Fortunately, both techniques have been actively studied for
many years, and so the electronic systems community can
make use of the existing results. This paper summarizes some
of the basic ideas behind these methods, it suggests how they
might be applied to electronic systems, and it gives some of our
initial results in this direction.
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