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Any single permanent magnet or electromagnet will always attract a magnetic fluid. For this reason it is

difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and

experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a

single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we

have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space,

quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for

electromagnet charging time delays. With this control, we show that dynamic actuation of

electromagnets held outside a domain can be used to position a droplet of ferrofluid to any desired

location and steer it along any desired path within that domain—an example of precision control of a

ferrofluid by magnets acting at a distance.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

We consider an initial ferrofluid control problem: the precise
manipulation of a single drop of ferrofluid by four external
electromagnets. Precision control is achieved by feedback: we
sense the location of the droplet by a camera and imaging
software and then correctly actuate the electromagnets at each
time to move it from where it is to closer to where it should be
(Fig. 1). Repeating this magnetic correction at each time quickly
forces the droplet to the desired stationary or moving target and
allows us to precisely control its position over time.

Control design, the mathematical development of the
algorithm that determines how to turn on the magnets to create
the needed position correction at each time, is challenging. It is
recognized that each magnet can only pull the fluid towards it;
any single magnet cannot push a magnetic fluid [1,2]. Further, the
available pulling force drops rapidly with the ferrofluid distance
from each magnet [3] (see Fig. 2 and our derivation in Appendix
3.1 in the supplementary material (doi:10.1016/j.jmmm.2010.08.
024)). This makes it difficult to move a ferrofluid droplet left when
it is close to the rightmost magnet (the other three magnets must
pull it from a long distance, and not over-pull it once it
ll rights reserved.

: +1 301 405 9953.
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approaches them). Our control algorithm accounts for these
difficulties, both for the pulling-only nature of each magnet and
for the rapid drop-off in magnetic force with distance, and it does
so in an optimal (minimal electrical power) and smooth fashion.
This is done by first find the set, or manifold, of all electromagnet
actuations that will create the desired droplet motion, and then
within this manifold picking the minimum power solution.
Significant effort has been devoted to insuring that the numerical
computations of the optimum are accurate and robust, and a
sophisticated nonlinear filter has been integrated into the control
to yield smooth magnet actuations that can be implemented
experimentally. Our method takes into account the electromagnet
strength limitations and it corrects for electromagnet dynamics,
their charging time lag, by a high-pass temporal filter inserted
into the control loop. These innovations provide a scalable control
method that can be extended to larger and stronger magnets in
the future.

Our interest here is to enable strong magnets to manipulate
magnetic particles to deeper targets [4–7]. As such, we are
interested in control algorithms that optimally exploit the
capabilities of bigger magnets and that account for their charging
time delays. We believe that the algorithms we have designed and
demonstrated here can be scaled up to high strength magnets.
Compared to our prior work of manipulating single [8,9] and
multiple particles [10] by electric fields and electroosmotic flows
[11,12], which can both pull and push particles, the specific
10), doi:10.1016/j.jmmm.2010.08.024
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Fig. 1. Feedback control of 4 electromagnets can accurately steer a single ferrofluid droplet along any desired path and hold it at any location. Here a camera, computer,

amplifier, and the 4 electromagnets are connected in a feedback loop around a petri dish containing a single droplet of ferrofluid. The camera observes the current location

of the droplet; the computer, using the optimal nonlinear control algorithm developed below, computes the electromagnet actuations required to move the droplet from

where it is to where it should be; and the amplifier applies the needed voltages to do so. This loop repeats at each time to steer the droplet.

Fig. 2. The magnetic field created by the first magnet and the resulting force on a

superparamagnetic particle at any location in the petri dish. The plot is colored by

the magnetic field intensity squared on a log scale (log9H29), and the resulting

force directions, according to Eq. (4) below, are shown by the black arrows at each

location. The particle is always attracted to regions of highest magnetic field

intensity, i.e. here to the on right magnet. (This, and subsequent theory plots, are

shown in non-dimensional variables and magnetic strength units for simplicity of

presentation).
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challenges that arise for magnetic control of a single ferrofluid
droplet with larger magnets are as follows. (1) The pull only
nature of the magnetic actuation. (2) The sharp drop-off in
magnetic force with distance from the magnet: applying a needed
magnetic field, when the droplet is far away, can easily and
dramatically over-pull the droplet as it gets slightly closer to that
magnet. (3) The maximum strength constraints of the magnets,
which provide a hard stop to the amount of control authority
available. This makes the minimum electrical power control both
reasonable and desirable, (4) The nonlinear cross-coupling
between magnets (turning on two magnets at once is not the
same as the sum of turning on each magnet individually). A
control law based on single magnet actuations will have degraded
performance on the diagonals between magnets. Our method
Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
works effectively over the entire spatial domain. (5) The related
need to switch magnet actuation smoothly in time from one set of
magnets to another as the ferrofluid droplet moves through its
domain (our control design achieves this). (6) The need to correct
for electromagnet coil charging time delays. This last aspect is
crucially important for deeper control using larger and stronger
magnets that will have longer charging times.

Design and demonstration of control algorithms for minimum
power precision control of magnetic particles and fluids are also
relevant for magnetofection [13], single particle manipulation
(magnetic tweezers) [14–17], lab-on-a-chip systems that include
magnetic particles or fluids [18,19], as well as magnetic drug
delivery [20–31]. Magnetofection, the delivery of magnetic
particles into cells by an applied magnetic force, could benefit
from the approach described here—our technique could be used
to position a droplet of magnetic particles above a small region of
target cells, and then a magnetic field applied at the bottom could
draw the particles into those target cells only. For magnetic
particle manipulation, or magnetic tweezers, our method shows
how to achieve precision control with the lowest possible
electromagnetic powers, thus allowing micro-fabricated magnets
[16,19,32–36], which have a practical limit on how big a magnetic
field they can produce, to be placed further apart and to control
magnetic particles over a larger spatial domain. Since magnetic
tweezing forces scale with particle volume [35,37], minimum
power control should allow more effective manipulation of
smaller objects since it will enable the available magnets to
create manipulation forces more efficiently. Our control results
could also benefit dielectrophoresis [38–40] lab-on-a-chip micro-
fluidic applications. DEP and magnetic actuation share the same
governing equations for the force on the actuated object (replace
the magnetic field H

!
in Eq. (7) by the electric field E

!
). Thus the

mathematics presented here applies equally to DEP control. Our
optimal algorithm could allow each standard 4-electrode DEP pad
to steer a single object, with minimum electrical power.

Past work in control of magnetic particles and magnetizable
objects has included magnetically assisted surgical procedures,
MRI control of ferromagnetic cores and implantable robots,
ferrofluid droplet levitation, magnetic tweezers, and nanoparticle
magnetic drug delivery in animal and human studies. Methods to
manipulate a rigid implanted permanent magnet through the
brain with a view to guide the delivery of hyperthermia to brain
tumors are presented in [41,42]. Here a point-wise optimization is
stated for the magnetic force on the implant and example
numerical solutions are shown, which displays jumps and
10), doi:10.1016/j.jmmm.2010.08.024
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singularities similar to the ones we had to overcome in this work.
Based on market opportunities, the focus of this group changed to
magnetically assisted cardiovascular surgical procedures and led
to the formation of the company Stereotaxis (www.stereotaxis.
com/). This company now uses magnetic control to guide
catheters, endoscopes, and other tools with magnetic tips for
precision treatment of cardiac arrhythmias and other cardiovas-
cular interventions. Stereotaxis catheter control algorithms are
not disclosed completely but are noted briefly in published
patents [43–48]. Control of magnetizable devices and ferromag-
netic cores using an MRI machine as the actuator are presented by
Martel et al. [49], Mathieu et al. [50], and Tamaz et al. [51], who
also discuss manipulation of implantable magnetic robots [52–54]
and magnetic guidance of swimming magnetotactic bacteria
[55,56].

In terms of feedback control of microscopic and nanoscopic
magnetizable objects, in [57] a ferrofluid is levitated by feedback
control of a single upright electromagnet. Here the droplet of
nanoparticles is passively attracted to the electromagnets’ vertical
axis and active feedback is used to modulate the strength of
the magnet to stabilize the drop up and down against gravity
and disturbances. Two- and three-dimensional control of mag-
netic particles in microscopic devices (magnetic tweezers) is
described in [14–17,34,37], including magnet design and feedback
control methods that enable impressively precise and sensitive
capabilities for manipulating magnetic microscopic objects
[35,58]. Finally, prior work in magnetic manipulation of ther-
apeutic ferromagnetic nanoparticles (magnetic drug delivery) has
progressed to animal and human clinical trials [20,21,27,31,59].
Magnetic manipulation here is currently limited to static magnets,
either held externally [60–65] or implanted [66–71]—as yet there
is no active feedback control in this arena.

Compared to prior work, our research here is focused on
optimal control for minimum power smooth and deep manipula-
tion of a ferrofluid, with a view towards enabling feedback control
of magnetic drug delivery to reach deeper tumors in the long term
(see also [4,5,7]). To this end, we have addressed the next major
step: we have developed and experimentally demonstrated a
novel and sophisticated optimal control algorithm to effectively
manipulate a single ferrofluid droplet by feedback control. This
algorithm was explicitly designed to address the highly nonlinear
and cross-coupled nature of dynamic magnetic actuation and to
best exploit available electromagnetic forces.
2. Theory and Modeling

Magnetic fields are described by Maxwell’s equations [72]. In
our case, we are changing magnetic fields slowly (compared to
radio frequencies); thus the magneto-static equations are appro-
priate. These are

rH
!
¼ j
!

, ð1Þ

r B
!
¼ 0, ð2Þ

B
!
¼ m0ðH

!
þM
!
Þ¼ m0ðH

!
þwH
!
Þ, ð3Þ

where B
!

is the magnetic field (tesla), H
!

is the magnetic
intensity (amperes/meter), j

!
is the current density (A/m2), M

!

is the material magnetization (A/m), w is the magnetic suscept-
ibility, and m0¼4p�10�7 N/A2 is the permeability of vacuum.
These equations hold true in vacuum and in materials (in air
and liquid), for permanent magnets (magnetization M

!
a0) and

for electromagnets (current j
!

a0). For our simple petri dish
Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
surrounded by four electromagnets configuration, these equations
can be readily solved using MATLAB.

The force on a single superparamagnetic particle is then
[7,26,73,74]

F
!

M ¼
2pa3

3

m0w
1þw=3

r:H
!

:2
¼

4pa3

3

m0w
1þw=3

@H
!

@ x
!

 !T

H
!

, ð4Þ

where a is the radius of the particle (m),r is the gradient operator
(with units 1/m), and @H

!
=@ x
!

is the Jacobian matrix of H
!

with
respect to the position vector x

!
¼ ðx,y,zÞ. The first relation states

that the force on a single particle is proportional to the gradient of
the magnetic field intensity squared—i.e. a superparamagnetic
particle will always experience a force from low to high applied
magnetic field; it will be attracted to any single turned-on magnet
regardless of its polarity. The second relation, which is obtained
by applying the chain rule to the first one, is more common in the
literature and clearly shows that a spatially varying magnetic field
(@H
!
=@ x
!a0) is required to create a magnetic force.

If the applied magnetic field is sufficient to magnetically
saturate the particle, thenð@H

!
=@ x
!
Þ
T H
!

in Eq. (4) is modified to
ð@H
!
=@ x
!
Þ
T M
!

sat , where M
!

sat is the saturated magnetization of the
particle. Since M

!
sat lines up with H

!
, this does not change the

direction of the force, only its size. In our case, the applied
magnetic field never reaches the saturation limit of our particles
and so Eq. (4) is correct as stated for any single magnetic particle.

When a magnetic force is applied, a single particle will accelerate
in the direction of that force until it sees an equal and opposite fluid
(Stokes) drag force. Since the Stokes force is [75–77]

F
!

S ¼�6paZ v
!

, ð5Þ

where v
!

is the velocity of the particle relative to the fluid. Our
nanoparticles are suspended in a solution of deionized water. During
the experiments, we place them on top of a layer of high viscosity
mineral oil (to keep the particles suspended and limit particle
interactions with the bottom of the petri dish although the ferrofluid
does still sink slowly and eventually does touch the petri dish
surface). Thus, for us, the relevant surrounding fluid is the mineral oil
and it has a viscosity of Z¼0.0576 kg/(m s). Now, setting Eq. (5) equal
to Eq. (4) and solving for velocity, we get

v
!

ss ¼
a2

9Z
m0w

1þw=3
r:H
!

:2
¼ kr:H

!
:2

, ð6Þ

where k¼ a2m0w=9Zð1þw=3Þ is the magnetic drift coefficient
(kE1.6�10�20 m4/A2 s for our 100 nm diameter particles). This
steady state velocity is achieved very quickly. For our particles it is
predicted to be achieved in nanoseconds (the time constant is
computed from Newton’s second law by comparing the nanoparticle
mass times acceleration versus the velocity dependent Stokes drag
force).

We manipulate a single droplet of ferrofluid, which is
composed of many superparamagnetic nanoparticles held
together by surface tension and magnetic interactions. The net
force on the droplet, and hence its resulting velocity, is still in the
direction of r:H

!
:2

as in Eqs. (4) and (6). The issue now is the
magnitude of that velocity due to particle-to-particle interactions.
Analogously to Eq. (6), we define k0 as the magnetic drift
coefficient for the entire ferrofluid droplet

v
!

droplet_ss ¼ k0r:H
!

:2
: ð7Þ

To quantify k0, we measured droplet velocities under the action
of a single magnet for two droplet volumes of 5 and 7.5 mL and
compared them to theoretical predictions (see Appendix 3.1,
doi:10.1016/j.jmmm.2010.08.024). The predicted motion best
matched the observed motion, for the majority of the droplets
10), doi:10.1016/j.jmmm.2010.08.024
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trajectory, when k0E3.5�10�13 and k0E4.2�10�13 m4/A2 s for
the two droplet sizes, respectively. However, the speed of the
motion was under-predicted at the end of the trajectory when the
droplet quickly snapped to the edge of the petri dish within the
high-field region of the turned-on external magnet (Figure SM-3
in the supplementary material appendix, doi:10.1016/j.jmmm.
2010.08.024).

Four scenarios were considered to understand and qualita-
tively explain the difference between the magnetic drift coeffi-
cient predicted for a single particle and that inferred for the
ferrofluid droplet: (1) the motion of a single nanoparticle, (2) the
motion of a chain of particles held together by magnetic particle-
to-particle interactions, (3) the motion of an agglomerate of
particles held together by magnetic particle-to-particle and chain-
to-chain interactions, and (4) the motion of a rigid ferromagnetic
bead of the size of the droplet (corresponding to the case, where
all the particles in the droplet are held together and all act as one
mass). Overall, the third option best explained the observed
k0 values. Options 1 and 4 dramatically under-predicted and
modestly over-predicted k0, respectively. The force on single
chains of particles (second option), including a chain of the entire
length of the droplet, was also not enough to account for the
measured k’ values. Only the third option could explain the
measurements and was consistent with prior studies on particle-
to-particle interactions which showed that particles can form
chains and superstructures that dramatically increase the net
magnetic force compared to the net viscous drag [78–82]. This
explanation is also compatible with our finding that the magnetic
drift coefficient varies and is greatest when the droplet is in the
high field region near the turned-on magnet: the higher magnetic
field increases chaining and superstructures.

We note that our control performance is insensitive to the
value of k0—it continues to work even if we do not know k0

accurately and do not account for its variation with the local
magnetic field strength. This is because the control always applies
a velocity to move the droplet from where it is towards where it
should be—it needs only to set the direction correctly, the
magnitude of the velocity is not critically important since another
correction will occur at the next time step. Further, the variation
in k0 is only appreciable at the edges of the petri dish closest to the
external magnets; k0 is close to constant for the majority of the
petri dish interior.

Based on the above, we now state the motion of the droplet as a
function of the actuation of the four magnets—this is information
we need to know in order to design the magnets control law. Let
H
!

1ðx,yÞ, H
!

2ðx,yÞ, H
!

3ðx,yÞ, and H
!

4ðx,yÞ be the magnetic fields in the
xy plane, across the petri dish, when each magnet is turned on with
a 1 A current. The first magnetic field H

!
1ðx,yÞ is shown in Fig. 2 as

computed by MATLAB, the other three H
!

k’s are 901 rotations of
H
!

1. Let u1, u2, u3 and u4 be the instantaneous electrical current in
each of the four magnets, respectively. Then, by the linearity of the
magneto-static Eqs. (1)–(3), the time-varying magnetic field that
we apply is given by

H
!
ðx,y,tÞ ¼ u1ðtÞH

!
1ðx,yÞþu2ðtÞH

!
2ðx,yÞþu3ðtÞH

!
3ðx,yÞþu4ðtÞH

!
4ðx,yÞ:

ð8Þ

In our experiments, we checked that this superposition of
magnetic fields is valid. The concern was that the magnetic field
from one magnet could perturb the core of another magnet. We
measured the magnetic field in the petri dish due to the action of
one magnet only, due to the action of another magnet only, and
when they were both turned-on together. We found that the
magnetic field due to both magnets was exactly equal to the sum
of the magnetic field due to each magnet turned-on alone. The
Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
explanation for this is that the magnets are sufficiently far apart,
and the magnetic fields that they produce fall off sufficiently
quickly, so that one magnet cannot substantially change the
magnetization of the core of another magnet.

During feedback control, we do not have direct access
to the vector of currents u

!
ðtÞ ¼ u1ðtÞ u2ðtÞ u3ðtÞ u4ðtÞ

� �T
because we cannot instantaneously charge a magnet to any
desired strength. Instead, we control the vector of voltages
V
!
ðtÞ ¼ V1ðtÞ V2ðtÞ V3ðtÞ V4ðtÞ

� �T
. To first order, the current in

each magnet is related to its voltage by simple time delay
dynamics [83]. In vector form, this voltage–current relationship
for all the magnets is given by

d

dt
u
!
ðtÞ ¼�

R

L
u
!
ðtÞþ

1

L
V
!
ðtÞ, ð9Þ

where R and L are the resistance and inductance of the magnets,
respectively. Our control corrects for this time delay by a specially
designed nonlinear temporal filter.

Substituting Eq. (8) into the ferrofluid droplet velocity Eq. (7)
gives the final model for the droplet motion in terms of the
applied control

d

dt
xðtÞ yðtÞ
� �

¼ kur:
X4

i ¼ 1

uiðtÞH
!

iðx,yÞ:2

¼ ku
X4

j ¼ 1

X4

i ¼ 1

uiðtÞ ½rðH
!

iðx,yÞH
!

jðx,yÞÞ� ujðtÞ

¼ ku u
!T
ðtÞ Pxðx,yÞ u

!
ðtÞ u
!T
ðtÞ Pyðx,yÞ u

!
ðtÞ

h i
, ð10Þ

where xðtÞ yðtÞ
� �

is the current location of the droplet in the
petri dish; the second equality was achieved by carrying out the
square, by multiplying H

!
¼ u1 H
!

1þu2 H
!

2þu3 H
!

3þu4 H
!

4 by itself
and then moving the gradient operator into the resulting double
summation, and the last equality is a compact matrix representa-
tion with subscript T denoting vector transpose and the matrices
Px and Py defined as

Pxðx,yÞ ¼ ½@ H
!

iðx,yÞ � H
!

jðx,yÞ
� �

=@x�4�4,

Pyðx,yÞ ¼ ½@ H
!

iðx,yÞ � H
!

jðx,yÞ
� �

=@y�4�4: ð11Þ

All other variables are as defined previously. Together with
Eq. (9), this is the model for droplet’s motion as a function of the
applied control. It is a nonlinear differential equation—the P

matrices depend on the droplet’s location, since the magnetic field
applied by each magnet varies in space across the petri dish. The
dynamics is quadratic in the current control vector u

!
because the

force depends on the gradient of the magnetic field squared. This
means the droplet’s motion depends on both single magnet
actuation and on uiuj cross terms—the velocity created by turning
on two magnets at the same time is not the sum of the velocities
created by each magnet alone. Our control is explicitly designed
to account for this quadratic nature of the dynamics.
3. Quadratic model-based control

Our control operates by continuously directing the ferrofluid
droplet from where it is measured to be towards where it should
go (Fig. 1). With this approach, we can both hold the ferrofluid at a
target location (the control continually puts it back) and we can
steer the droplet along the desired trajectories (the control is
always moving the droplet towards its next desired location). At
each time we compute a displacement error vector between the
droplet’s desired and measured position d

!
¼ x
!

desired� x
!

measured
10), doi:10.1016/j.jmmm.2010.08.024
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and we actuate the four magnets to create a droplet velocity that
is along this displacement vector v

!
¼ K d
!

(the scalar K is our
control gain) so that the droplet moves towards its target location.
The task of the control algorithm is to decide how to best actuate
the four magnets to achieve the needed velocity.

The momentum of the ferrofluid is negligible. This means the
droplet’s has no ability to continue to travel if there is no applied force
and it reacts immediately to any newly applied force. Thus the
droplet’s velocity is always in the direction of the magnetic force that
we apply (this further means the droplet can execute sharp turns as
we show in the results section). The task of the controller to create the
needed droplet velocity can be phrased as creating a magnetic force in
the right direction at the droplet’s current location: the two only
differ by a constant c, i.e. v

!
¼ c F
!

mag . Although the droplet has
no momentum, the electromagnets do. Their actuation cannot be
changed sharply (due to coil charging time-constants) and our control
takes this into account and compensates for it.

At each moment in time the control has to achieve a desired
droplet velocity. This requirement sets two degrees of freedom:
the velocity has an x and a y component. But there are four
magnets. Thus we have two additional degrees of freedom left
over for minimizing control effort. To do this, our control
algorithm solves the following problem: it always restricts the
four magnet actuations in such a way so as to exactly achieve
the required velocity vector, it then further optimizes over the
remaining two degrees of freedom to choose an actuation that
minimizes the consumption of electrical power by the magnets.

The task of achieving a desired droplet velocity v
!
¼ ðvx,vyÞ can

be phrased mathematically in terms of the set of algebraic
quadratic equations:

ku u
!T
½Pxðx,yÞ� u

!
¼ vx,

ku u
!T
½Pyðx,yÞ� u

!
¼ vy: ð12Þ

Now, minimizing the electrical power of the magnets is
equivalent to minimizing the quadratic cost function:

J¼ 99 u
!992

¼ u
!T

u
!
: ð13Þ

Therefore, the control problem can be formulated in terms of
minimizing (13), subject to the quadratic control constraints (12).
Our approach to this optimization problem is to first identify a
parametric family of all solutions of (12) (the constraint space),
then explicitly express the cost function (13) in terms of the
parameters of this family, and finally minimize the cost with
respect to the parameters. This converts the original constrained
optimization problem to an unconstrained problem. We outline
these two steps below and refer to [84] for details.

At any specific ðx,yÞ droplet location, for each desired velocity
v
!
¼ ðvx,vyÞ, the constraint space is a two-dimensional surface in

the four-dimensional space of all possible actuations of the
magnets—all points u

!
on this surface create the desired droplet

velocity v
!

. Define the vector p
!

to be the magnetic field at the
ðx,yÞ location of the droplet

X4

j ¼ 1

uj H
!

jðx,yÞ ¼ p
!
: ð14Þ

Then the 2-dimensional quadratic constraint of Eq. (12) can be
broken up into two equivalent linear constraints given by Eq. (14)
and the next equation

2ku
X4

j ¼ 1

ujrð p
!T

H
!

jðx,yÞÞ ¼ v
!
: ð15Þ
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We note that Eqs. (14) and (15) represent a set of two linear 2-
dimensional equations (4 equations total) for u

!
and p
!

(for 6
unknowns) instead of one quadratic 2-dimensional equation for
u
!

alone (2 equations for 4 unknowns). The advantage of the
second formulation is that it is linear in u

!
(uj appears only once in

Eqs. (14) and (15), u
!

appears twice in each equation in (12)). If
we choose a specific magnetic field direction, i.e. if we choose a p

!
,

then we are left with 4 equations for the 4 actuation variables
ðu1,u2,u3,u4Þ. For any p

!
, we can easily solve for u

!
in terms of p

!

by a linear inversion. The end result is that the magnetic field
itself, at the droplet’s location, now parameterizes the choice of all
possible magnet actuation currents via

u
!
¼

H
!

1ðx,yÞ H
!

2ðx,yÞ H
!

3ðx,yÞ H
!

4ðx,yÞ

rð p
!T

H
!

1ðx,yÞÞ rð p
!T

H
!

2ðx,yÞÞ rð p
!T

H
!

3ðx,yÞÞ rð p
!T

H
!

4ðx,yÞÞ

2
4

3
5
�1

�
p
!

v
!
=2k0

" #
¼ g
!
ð p
!
Þ ð16Þ

that will achieve the desired droplet velocity v
!

. Now we have
exactly satisfied the velocity constraint and can search simply
over the magnetic field direction p

!
to find the minimum power

control. (Remember that the magnetic field direction p
!

is not the
direction of the applied magnetic force F

!
mag or, equivalently, the

created droplet velocity v
!

. The magnetic force is given by Eq. (4)
and must be in the direction of the desired droplet velocity, the
magnetic field is the remaining free parameter over which we now
search to find the minimum electrical power control u

!�
. This split

of the problem into a force and field portion is both physically
satisfying and yields a well conditioned optimization problem
that can be solved cleanly.)

Now, the electrical power cost function J¼ u
!T

u
!
¼ g
!T
ð p
!
Þ g
!
ð p
!
Þ

must be minimized over p
!

. This optimization problem is easier to
solve using polar coordinates p

!
¼ r cosf sinf

h i
for the magnetic

field direction. We perform the optimization in two steps: we first
minimize J with respect to r with f fixed and we then minimize
with respect to f. The explicit form of u

!
¼ g
!
ð p
!
Þwritten in Eq. (16)

allows for a closed form solution for the first step, while the second
step requires a numerical optimization algorithm. This gives the
final optimal control u

!�
.

The nature of our resulting optimal control algorithm is
illustrated in Figs. 3 and 4. It minimizes the amount of control
effort used and explicitly accounts for the nonlinear nature of the
magnetic force. The parameters used for generating these graphs
are those of our experimental test-bed. Fig. 3 is for a simple case,
where we wish to move a magnetic droplet along the x-axis from
left to right with velocity v

!
¼ ð1,0Þ. It shows the magnetic

potential energy U ¼�:H
!

:2
created in the petri dish as the drop

moves through its x¼�0.7, �0.2, +0.2 and +0.7 locations along
the horizontal axis (y¼ 0) with unit speed. The magnetic
actuations (electrical currents) of each of the four magnets are
also displayed (the sign denotes the polarity of the current,
positive is clockwise). Notice how the actuation switches from the
top and bottom magnets to mainly the right magnet as the droplet
is moved from left to right. This is because when the droplet is far
away from the right magnet it can be actuated to the right with
lower current by using the closer top and bottom magnets.

Fig. 3 is for a droplet velocity that is always to the right.
Fig. 4 shows how the 4 magnets must be actuated to control the
ferrofluid droplet in any desired direction at any location in the
petri dish. Each panel is for a different velocity direction
(as shown by the small red line in the green circle at the top
left of each panel). Inside each panel, for each droplet ðx,yÞ
location, the length of each of the four small lines is proportional
to the electrical current that should be applied at each of the four
10), doi:10.1016/j.jmmm.2010.08.024

dx.doi.org/10.1016/j.jmmm.2010.08.024


Fig. 3. Magnetic energy and magnet actuation for control of a ferrofluid droplet from left to right. Each panel is for a different (x,y) droplet location (the black dot). The

black arrow is the direction of the desired (and thus applied) magnetic force, the color is the magnetic potential, which is equal to minus the magnetic field intensity

squared (on a logarithmic scale), and the text inside each magnet states the current through that magnet (positive for clockwise current, negative for counter-clockwise).
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magnets to move a droplet at that ðx,yÞ location along the
indicated velocity v

!
using minimum electrical power. The

sign of the currents is coded with blue for positive and red for
negative. This plot is read as follows: pick the panel that
corresponds to the velocity direction that is desired, pick the
current location of the ferrofluid drop in the petri dish, the 4 little
lines at that location show what magnet currents should be
applied in each of the 4 magnets (length corresponds to current
strength, blue and red represent a negative or positive current) to
move the droplet in the desired direction with minimum
electrical power.

Fig. 4 determines the vector u
!

of the electrical currents to be
applied to the magnets. However, as stated previously, we can
only control the vector V

!
of the voltages of the magnets. The

physical relationship between magnet currents u
!

and voltages V
!

is governed by the vector differential Eq. (9), a first order low-pass
filter. It suppresses the high frequency temporal contents of the
input V

!
and is characterized by its cut-off frequency o¼ R=L. To

prevent distorting the desired value of u
!

, we compensate for the
low-pass nature of the magnet physics by a linear high-pass filter
in the control loop. This high-pass filter is designed in such a
manner that its cascade combination with the low-pass magnet
physics leads to a flat frequency response. We use the simplest
high-pass filter for achieving this goal, which has a first order
Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
structure with a zero exactly at o (to cancel the pole of the low-
pass filter) and a pole at ou4o, where ou is the bandwidth of the
output of the control algorithm.

The control also includes a second nonlinear filter. As the droplet
moves through space, there are jumps in the type of control that is
optimal. This is evident even from the simple straight-line motion
case of Fig. 3, where it is first optimal to use the nearer top and
bottom magnets (first 2 panels) until the droplet gets close enough
to the right magnet so that its use becomes preferable (last panel).
This kind of magnet switching is fundamental and, if there was no
magnet charging time delays, the optimal control of Fig. 4 would
attempt to apply discontinuous currents in time as the droplet
moved through space. The magnet lag and linear high pass filter
would smooth these out somewhat. Additionally, we have
implemented a specially designed nonlinear filter that smoothes
the jumps in time but still ensures that the direction of the applied
current vector u

!
ðtÞ ¼ u1ðtÞ u2ðtÞ u3ðtÞ u4ðtÞ

� �T
accurately

tracks the direction of the desired optimal current vector shown in
Fig. 4 (mathematical filter details can be found in [84]). Since, as
before, it is the direction of the control vector that sets the direction
of the ferrofluid droplet motion, which in turn enables accurate
correction of droplet position errors, this nonlinear filter enables
a smooth control that does not degrade droplet manipulation
performance.
10), doi:10.1016/j.jmmm.2010.08.024
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Fig. 4. Elements of the optimal control vector
,

u at different ferrofluid locations in the control region to attain the velocity direction shown at the top left of each panel with

minimum electrical power. At each location, the length of each of the lines is proportional to the current to be applied to that magnet, the color (blue or red) corresponds to

the sign of the current to be used. Four different directions for the desired velocity
,
v are shown: 01, 151, 301 and 451 with respect to the x-axis. Magnet actuations for the

other seven 451 velocity direction sectors (each sector is half a quadrant) are symmetric 90o rotations and flips of the 4 cases shown. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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4. Experiment

In this section, we describe the details of the experimental
setup. As shown in Fig. 1, there are four major components,
the materials (petri dish, ferrofluid, liquid medium), the
camera, the control algorithm software and hardware, and the
electromagnets.

4.1. Materials used

We used a commercially available ferrofluid (Chemicell). The
ferrofluid contains 8% by volume of 100 nm diameter multi-core
particles. Each particle contains a 70–75 nm diameter starch
encapsulated magnetite core that consists of a fused cluster of
single-domain crystals. These magnetic particles were chosen for
their size and high magnetic susceptibility (w�72), which allowed
them to be actuated at up to 4 cm away from our moderate
strength electromagnets. A future experimental platform with
strong magnets is currently under construction and will be able to
manipulate a ferrofluid at a greater distance from the magnets.
Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
A 1.5 inch. (3.8 cm) diameter petri dish (Fisher Scientific) was
used to contain the ferrofluid. The petri dish was filled with a high
viscosity mineral oil (Heavy Viscosity Mineral Oil, CQ Concepts),
which served as a suspending medium for the droplet (as done in
[85]). We used mineral oil because of its density, viscosity and
surface tension properties, which caused the ferrofluid (which
comes in the form of magnetic particles suspended in DI water) to
remain as a single droplet and significantly reduces sticking of the
ferrofluid to the petri dish surface.
4.2. Camera and real-time ferrofluid position detection software

The vision system consisted of a lens, camera, external lighting,
and in-house imaging software. The camera (Guppy F-033B/C, 1st
Vision) operated at 58 frames/s, had 656 by 494 color pixels, and
was equipped with a 6 mm lens (1st Vision Inc.). A 56-LEDs ring
light (Microscope Ring Light, AmScope) was mounted above the
petri dish, around the camera, to create a shadow-free illumination
of the ferrofluid.
10), doi:10.1016/j.jmmm.2010.08.024
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The image software was coded in MATLAB version 2007b, with
a Data Acquisition Toolbox (version 2.11) and an Image Acquisi-
tion Toolbox (version 3.0), and an Image Processing Toolbox
(version 6.0), and ran on a Dell computer (2.4 GHz Intel Core2 Duo
CPU). It allowed accurate real-time tracking and velocity estima-
tion of the ferrofluid droplet or blob. This was achieved by
combining an algorithm that finds all blobs in an image frame and
an algorithm that tracks a blob of interest among other visual
features. (It is possible for us to track one droplet through a field
of many others [10] by using a Kalman tracking filter but this is
not necessary for the results presented in this paper.) Each image
frame is transferred from the camera to MATLAB through a
firewire (IEEE 1394) interface. The image is thresholded, filtered,
and operated on by an algorithm that finds the center of the
ferrofluid droplet. This method finds and tracks the position of the
ferrofluid droplet in less than 20 ms and passes that position to
the control algorithm. The vision tracking is completely automated
and does not require any user input during control operation.
Fig. 5. Control of a medium size 20 mL (1.7 mm radius) ferrofluid droplet slowly along a

is noted at the bottom of each column.

Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
4.3. Control algorithm implementation hardware and software

Like the vision code, the control algorithm is written in MATLAB
and runs on the same computer as the droplet image tracking.
It finds the optimal control magnet voltage actuation at each time
by solving the mathematics described above, and it takes 66.7 ms
to do so (hence the feedback loop runs at 15 Hz). This rate can be
improved (e.g., by using C or MEX files to do the evaluation) and
that will allow faster control of the ferrofluid in the future.

Output from the computer is used to command the four
electromagnets. The computer is connected to a digital-to-analog
signal converter (DAQ USB-3101, Measurement Computing),
which connects to four linear DC servo amplifiers (MSE421,
Mclennan). The latter allows us to increase the low current,
low voltage control signal (0–20 mA, 710 V) generated by the
digital-to-analog signal converter to the higher current, higher
voltage (0–1 A, 728 V) output signal required to power the four
electromagnets.
line, square, and spiral path. A quantitative measure of the average error (Eq. (17))

10), doi:10.1016/j.jmmm.2010.08.024
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4.4. Electromagnets

We used four small, inexpensive, and commercially available
electromagnets to achieve the ferrofluid control results in this
paper. These electromagnets (E-28-150 Tubular Electromagnet,
Solenoidcity, $57.51 each) have a length of 71.4 mm and a
diameter of 38.1 mm each. They contain a 14 mm diameter iron
core, their internal resistance was measured to be 43 O, and they
operate at 28 V while drawing 0.651 A. The strength of the
magnets was unrated by the manufacturer but we measured the
magnetic field distribution around these magnets with a 4.3 mm
wide Hall probe (DC Magnetometer (Gauss), AlphaLab Inc.) on a
square grid in the petri dish (with a placement accuracy of �1 mm)
and a field measurement accuracy of 72% (as rated by the
manufacturer) and verified that it matched the simulation data
shown in Fig. 2. We found that these magnets generated a magnetic
field of approximately 0.13 T at their faces, 0.20 T at their corners,
and �0.003 T at a distance of 3.7 cm, thus yielding a magnetic
field of approximately �0.016 T at the center of the petri dish.
Fig. 6. Control of a small 1 mL (0.6 mm radius) ferrofluid

Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
During longer experimental runs, the magnets were cooled by rigid
foam ice packs (Fisher Scientific) that were packed around them.
5. Results

We tested our magnetic control for a variety of ferrofluid
droplet sizes and desired trajectory shapes and speeds. Droplet
volumes were varied from 1 to 20 mL, which, under the action of
surface tension, correspond to droplet radii of 0.6 and 1.7 mm,
respectively. We also attempted control of a 150 mL droplet
(3.3 mm radius) but this droplet was too large to be held together
by surface tension during control and it broke apart. Trajectories
were varied from the simplest to more complicated. The simplest
task was to control the droplet in a straight line from its current to
a desired location (to the center and to the outside of the petri
dish). We also controlled the droplets in a square and spiral
trajectory, and along ‘UMD’ lettering path (for the University of
Maryland). Control speeds were varied from 0.033 to 0.11 mm/s.
droplet faster along a line, square, and spiral path.

10), doi:10.1016/j.jmmm.2010.08.024
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Experimental results are shown in Figs. 5-8 and in additional
figures in the supplementary material (doi:10.1016/j.jmmm.2010.
08.024). In each figure the columns from left to right illustrate a
straight line, square, and spiral trajectory. Time progresses from
top to bottom and each snapshot shows a trace of the droplets
motion for all preceding times. The average error between the
desired and actual position of the ferrofluid droplet is defined as

epath ¼
1

T

Z T

0
: x
!

desiredðtÞ� x
!

measuredðtÞ:dt, ð17Þ

where T is the amount of time it took to traverse the entire path.
For each trajectory the average velocity and this quantitative
average path error are noted on the bottom of that column. Below
we show the easiest (medium droplet, slow motion) and hardest
(small droplet, fast motion) two successful cases, as well as a third
case that failed—the large droplet that broke up immediately
under the applied magnetic actuation. We also show control along
a more complicated ‘UMD’ path. The supplementary material
provides figures for all the other cases tested (small droplet slow
motion; medium droplet fast motion), as well as movies of the
droplet behavior for all cases.

For control of the small 1 mL drop (Fig.6), the visible deviation
of the ferrofluid from the desired square and spiral paths near the
leftmost electromagnet contributes to most of the average
positioning error. This deviation occurs in an operating regime
where the magnets are being actuated near saturation. It is
possible that the asymmetry seen in the path is due to the slightly
different saturation characteristics between the four magnets, an
aspect that has not yet been accounted for in the control design.
Controlling the smaller droplet is harder. The medium size 20 mL
droplet can be actuated with less force the magnets do not have
to work as hard, and do not approach saturation; thus there is
virtually no deviation even during fast control (see Figure SM-2 in
the supplementary material (doi:10.1016/j.jmmm.2010.08.024).

Beyond a certain ferrofluid droplet size, the current magnetic
position control is no longer possible. For a 150 mL droplet
Fig. 8. Control of a medium size 20 mL (1.7 mm radi

Fig. 7. Attempted control of a large 150 mL (3.3 mm radius) ferrofluid droplet. As soo

droplets. This droplet was too big to control.

Please cite this article as: R. Probst, et al., J. Magn. Magn. Mater. (20
(see Fig. 7), applied magnetic forces exceed the surface tension
forces that hold the droplet together and the droplet is broken up
into sub-droplets. To close this results section we demonstrate
control of a single ferrofluid droplet along a ‘UMD’ path, for the
University of Maryland (Fig. 8).

Above we have shown optimal control of a single droplet to
4 cm depth using four medium-strength (0.13 T at their face),
small, commercially available and inexpensive magnets. Based on
our mathematical analysis above, using scaled-up stronger (2 T),
larger (30 cm length, 30 cm coil diameter, 12 cm core diameter)
electromagnets, will enable the same control forces on a single
drop of ferrofluid at a depth of half a meter. Advanced magnets
with optimally matched materials and shaped coils and cores, as
presented in [86–88], could enable even stronger and deeper
magnetic control forces.
6. Conclusion

This paper is concerned with precisely manipulating a
ferrofluid by external magnets at a distance, and it considers the
simplest archetypical example problem: control of a single
droplet of ferrofluid in the plane by 4 electromagnets. The control
algorithm explicitly takes into account the nonlinear pull-only
nature of the magnetic actuation, it is designed for both the
quadratic dependence of the magnetic force on the actuated
strength of each magnet and the sharp drop-off of force with
distance from each magnet. Control algorithm design is split into
two parts. In the first, the set of all magnetic actuations is found
that will move the droplet from where it is towards where it
should be. In the second, from this set, the minimal electrical
energy actuation is chosen and is applied to the magnets at each
time. This gives a robust ability to actuate a single ferrofluid
droplet between the four magnets, to any location or along any
desired path. Successful numerical optimization and experiments
results have shown how to address key practical issues of
us) ferrofluid droplet slowly along a UMD path.

n as magnetic control is turned on, the droplet breaks up into multiple smaller

10), doi:10.1016/j.jmmm.2010.08.024
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electromagnet charging time delays, magnet strength constraints,
smooth switching between magnets, and the nonlinear depen-
dence of the applied magnetic pull-only forces on space and
electromagnetic currents.
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1. Additional Figures Experiment Results 

 

 
Figure SM-1: Control of a small 1 µL (0.6 mm radius) ferrofluid droplet slowly along a 

line, square, and spiral path (desired path: gray line; actual path: black line). A 

quantitative measure of the average error (equation Error! Reference source not found.) is 

noted at the bottom of each column.  

 

10 mm 
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Figure SM-2: Control of a medium size 20 µL (1.7 mm radius) ferrofluid droplet faster 

along a line, square, and spiral path. 
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2. Movies of Experimental Results 

 

Movie of Figure SM-1 (line) 

5a.mpg
 

Movie of Figure SM-1 (square) 

5b.mpg
 

Movie of Figure SM-1 (spiral) 

5c.mpg
 

Movie of Figure SM-2 (line) 

8a.mpg
 

Movie of Figure SM-2 (square) 

8b.mpg
 

Movie of Figure SM-2 (spiral) 

8c.mpg
 

Movie of Figure 5 (line) 

7a.mpg
 

Movie of Figure 5 (square) 

7b.mpg
 

Movie of Figure 5 (spiral) 

7c.mpg
 

Movie of Figure 6 (line) 

6a.mpg
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Movie of Figure 6 (square) 

6b.mpg
 

Movie of Figure 6 (spiral) 

6c.mpg
 

Movie of Figure 8 (UMD) 

8.mpg
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3. Appendix   

3.1. Computing the Magnetic Field for a Single Electromagnet 

Here we derive and compute the magnetic field around a single electromagnet (Figure 2).  We 
consider an N -loop solenoid with a constant coil radius a  (the thickness of the coil is ignored) 
and length l , and assume that a current I  passes through the solenoid. The solenoid axis is along 

the z -axis of a coordinate system such that the solenoid is extended from 0=z  toward lz −= . 

We determine the magnetic field )(rB
��

 at any arbitrary point ),,( zyxr =
�

 with 0>z . 

 

Let )(rBs

��
 be the magnetic field due to a single loop of the solenoid in the xy plane. Then, by the 

linearity of Maxwell’s equations, the total magnetic field can be expressed as 

(A 1.1) ),)/(,,()(
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∑
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���

 

which can be approximated by an integral formulation  
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We use the Biot-Savart law to determine the magnetic field due to a single loop. This law 

describes the magnetic field due to a differential element �
�

d of a wire according to 

(A 1.3) ,
4 3

0

s

sdI
Bd s �

�
�
�

� ×
⋅=

π

µ
 

where 0µ  is the permeability of free-space, s
�

 is the displacement vector from the wire 

differential element to the point at which the field is being computed, and sBd
�

 is the differential 

contribution of �
�

d  to the total magnetic field. Let )0,sin,cos( φφ aaq =
�

 be the position vector of 

a point on the loop, where φ  is the angle between q
�

and the x -axis. Then, �
�

d  and s
�

 can be 

represented as )0,cos,sin( φφ aad −=�
�

 and ),sin,cos( zayaxqrs φφ −−=−=
���

.  Substituting 

these vectors into (A 1.3) and integrating over ]2,0[ πφ ∈ , we get 

(A 1.4) 
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Substituting this result into (A 1.2), we obtain the total magnetic field 
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With some efforts, we can simplify this expression to 
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(A 1.6) 
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where al=θ and 1g  and 2g  are defined as 
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For any droplet position r
�

, the above two integrals are easily computed numerically using the 
trapezoidal or Simpson's rule.  
 

The magnet length ( l  = 71.4 mm) and inner coil radius (a = 7 mm) are stated in Section Error! 

Reference source not found..  However, we do not precisely known N, the number of loops, 
because we are treating these solid core magnets as air filled for mathematical simplicity and 
because the properties of the core are not stated by the manufacturer. As a result, N is our single 
free parameter and we choose it to best match our measured magnetic field data. Figure SM-3 
shows a comparison between the predicted and experimentally measured x-component of the 
magnetic field for the magnet on the right of the petri dish.  
 
 

 

Figure SM-3: The predicted versus the measured magnetic field when the right-most magnet is turned on to 

its maximum value of 28 volts. The vertical axis shows the x-component of the magnetic field (Bx) for (x,y) 

locations in the petri-dish.  The green mesh corresponds to the theory calculated above, the blue dots with the 

small vertical lines show the measured data and its error bars.  
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Using the values of a , l , I  and N above and plotting the log of the magnetic field intensity 
squared gives the coloring of Figure 2. As can be seen both above and on the logarithm scale of 
Figure 2, the magnetic field strength drops rapidly with distance from the electromagnet. 
 

3.2. Measurement of the Ferrofluid Droplet Magnetic Drift Coefficient k’ 

This section describes our measurements and methods to infer the value of the magnetic drift 
coefficient k’ in equation Error! Reference source not found. for the ferrofluid droplet. The 
purpose here is to quantify the bulk behavior of the droplet, not to infer the detailed physics of 
magnetic particle-to-particle interactions (readers interested in that aspect can refer to, for 
example, [1-5]).  
 
Two droplet volumes (5 and 7.5 µL) were placed near the center of the control domain and a 
single magnet was turned on to pull the droplet towards it. Time and position data of the droplet 
was recorded and compared to the motion predicted by our theoretical model (equations Error! 

Reference source not found.-Error! Reference source not found., Figure 2, and equation 
Error! Reference source not found.) for a range of k’ values. Figure SM-4 shows a comparison 
of the measured droplet movement (blue circles with error bars) to the predicted motion 
assuming the constant k’ coefficient shown for each green curve. 
 

 

Figure SM-4: Time and position data of a 5 µL droplet (blue circles with error bars) compared with 

predictions from the model (green lines). Motions for various constant k' coefficients are plotted ranging from 

the k’ value for a single nano-particle to a k’ value for the whole droplet treated as one rigid ferromagnetic 

bead. The two nearest curves to the experimentally measured positions have an average error of (|Xtheory – 

Xexperiment|/|Xexperiment|) = 4% and 33% up until 20 seconds for k’ = 3.5 x 10
-13

 and k’ = 5 x 10
-13

 respectively.   
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From this figure, it is clear that there is a best-fit k’ value (3.5 × 10-13 m4/ A2 s for this case) and 
it is also clear that a constant k’ value does not adequately predict the fast snap-to-the-magnet 
droplet motion at the end of the trajectory (for t > 20 seconds). To quantify the change in k’ over 
time we used the definition of k’ stated in equation Error! Reference source not found.. We 
plotted the droplets instantaneous drift velocity versus the gradient of the magnetic field squared 
at each location and divided one by the other to give us a measure of k’ at each instant in time. 
From this we then further plotted the instantaneous k’ against the magnetic field strength at that 
time and location (Figure SM-6).  
 
 

 

Figure SM-5: Inferring the instantaneous k' value. (Top) The instantaneous drift velocity of the droplet and 

its associated local gradient of the magnetic intensity squared are plotted in blue. As the gradient of the 

magnetic intensity squared increases, so does the drift velocity. (Bottom) The resulting inferred time 

dependent k’ value is plotted in green versus time. It can be seen that k' remains relatively constant until a 

sharp increase at 20 seconds. The error bars represent two standard deviations away from the measured 

value.   
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Figure SM-6: Dependence of k' on the local magnetic field intensity |H|. As the magnetic intensity increases, 

the k’ value also increases. 

 
As mentioned in Section Error! Reference source not found., to qualitatively understand the 
above k’ behavior we considered four possible scenarios for nano-particle interactions within a 
moving droplet. These included: 1) the independent motion of a single nano-particle, 2) the 
motion of a chain of particles held together by magnetic particle-to-particle interactions, 3) the 
motion of an agglomerate of particles held together by magnetic particle-to-particle and chain-to-
chain interactions, and 4) the motion of a rigid ferromagnetic bead the size of the droplet. Table 
SM-1 shows the parameters for each possible scenario. The table lists the normalized drag force 
(force per unit velocity) and the normalized magnetic force (force per gradient of the magnetic 
field squared) for each of the four cases. Here the net magnetic force is computed by simply 
summing up the magnetic forces on each particle in the aggregate. The drag force is computed 
by the appropriate Stokes drag for a cylinder [6] (shape approximation for option 2) or a sphere 
[2, 3, 7] (a shape approximation for option 3).  
 
At the equilibrium velocity, which the droplet achieves quickly, the net magnetic force equals the 
net opposing viscous drag force (FM = FD) thus ensuring that the k’ as defined in the table 
matches the k’ in equation Error! Reference source not found.. It is immediately clear from 
Figure SM-4 and the table that cases 1 and 4 serve as an upper and lower bound for the motion of 
the droplet – the first severely under-predicts the motion (a single nano-particle will barely move 
under the applied magnetic force) and a rigid droplet over-predicts it (assuming that all the nano-
particles are effectively held together rigidly is not true). Option 2 also under-predicts the motion 
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since, even if the chain of nano-particles is the length of the entire droplet, the resulting net 
magnetic force on the chain is still not large enough to sufficiently overcome viscous drag and 
create a k’ of the needed magnitude. This only leaves option 3 as a possibility.  
 

Table SM-1: The four considered scenarios with the parameter values for each case are shown. The Stokes 

drag force divided by the drift velocity [kg/s], a magnetic force divided by the gradient of the magnetic 

intensity squared [kg m
4
/A

2
 s], and the k' coefficient [m

4
 /A

2
 s]. It is clear that options 1 and 2, even if the 

length of the chain is the entire length of the droplet, have a maximum k' value much smaller than the needed 

k’ ~ 3 x 10
-13

 value. Scenario 4 has a k’ that is too great. Scenario 3 can produce the desired k’ value for 

agglomerates that have a radius 22% of the radius of the entire ferrofluid droplet (each such agglomerate 

would contain approximately 1% of the droplets total number of nano-particles).  

 Normalized Drag Force 

)/( vFD  

Normalized Magnetic Force 

( 2HFM ∇ ) )/(
'

2

vF

HF
k

D

M ∇
=  

1) Single particle 5.4 x 10-8 8.5 x 10-28 1.5 x 10
-20

 

2) Max chain of particles 7.7 x 10-5 1.8 x 10-23 2.4 x 10
-19

 

3) Agglomerate of particles 
(22% size of droplet) 

2.5 x 10-4 8.7 x 10-17 3.5 x 10
-13

 

4) Rigid droplet 1.2 x 10-3 8 x 10-15 7 x 10
-12

 

 
Option 3 is consistent with the results reported in [3, 7] and can produce a k’ of the needed 
magnitude. It implies that if, on average, nano-particles in the ferrofluid droplet agglomerate into 
clumps that each contain approximately 1% of the nano-particles in the droplet, then, as these 
clumps move under the action of the magnetic field and are opposed by a viscous drag per 
clump, the resulting motion will give a k’ of the observed magnitude. 
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