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a b s t r a c t

Optimization methods are presented to design Halbach arrays to maximize the forces applied on

magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to

focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with

distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by

optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with

deeper tumors. The presented optimization methods are based on semi-definite quadratic program-

ming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push

magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels;

push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach

designs, here tested in simulations of Maxwell’s equations, significantly outperform benchmark

magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume

optimal Halbach design yields a 5� greater force at a 10 cm depth compared to a uniformly

magnetized magnet of the same size and strength. The designed arrays should be feasible to construct,

as they have a similar strength (r1 T), size (r2000 cm3), and number of elements (r36) as

previously demonstrated arrays, and retain good performance for reasonable manufacturing errors

(element magnetization direction errors r51), thus yielding practical designs to improve magnetic

drug targeting treatment depths.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic drug targeting refers to the use of magnets to direct
therapeutic magnetizable nanoparticles to regions of the disease:
to tumors [1–3], infections [4] or blood clots [5]. Targeting allows
the focusing of drugs [6–15] and other therapies, such as gene
therapy [16], to disease locations. Such magnetic targeting can
reduce the distribution of drugs to the rest of the body, thus
minimizing side effects such as those caused by systemically
administered chemotherapy [17–19]. The reach of magnetic drug
targeting – the distance from the magnets to in vivo locations
where particle capture is still effective – depends, in addition to
the vascularization of the targeted region [20–24], on both the
applied magnetic field and the magnetic gradient, both of which
fall off quickly with distance from the magnets [25,26]. Insufficient
ll rights reserved.

Bioengineering, University of
reach has limited the applicability of magnetic drug delivery.
In cancer, it has limited treatment to shallow tumors [9,27].
If focusing depth could be increased that would allow treatment
of a greater number of disease profiles and patients. The research
presented here aims to maximize the reach of magnetic drug
delivery [23,24,28–30] by designing optimal Halbach arrays [31]
to extend magnetic forces deeper into the body.

Existing magnetic drug delivery techniques commonly use
permanent magnets or electromagnets to pull particles into the
target tissue by placing the magnets in close proximity to the
target to accumulate the therapy [32–36]. Magnet strengths have
ranged from 70 mT [32] to 2.2 T [36] with corresponding applied
magnetic gradients from 3 T/m [33] to 100 T/m [35], a range that
reflects desired/possible depth of targeting versus magnet cost,
complexity, and ease-of-use. To date, a focusing depth of 5 cm has
been achieved in human clinical trials with 100 nm diameter
particles using 0.2–0.8 T strength magnets [8,9]; and focusing
depths of up to 12 cm have been reported in animal experiments
using larger 500 nm–5 mm particles and a 0.5 T permanent mag-
net [27]. Restricted treatment depths mean that only a fraction of
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patients can be treated with magnetic drug delivery, for example
those who present with shallow but inoperable tumors (like the
patient shown in Fig. 1a). An ability to extend magnetic forces
deeper into the body would enable treatment of more patients.

Fig. 1 has a single magnet attracting particles to it. The first
optimization goal is to lengthen the reach of such a pull attrac-
tion. However, it is also possible to use magnets to push or
magnetically inject particles [38]. The ability to magnetically push
in particles is valuable for a variety of clinical applications, from
non-invasively injecting therapy into the inner ear [39], to
pushing drugs to the back of the retina for treatment of eye
diseases [32], and to injecting nano-therapies into wounds and
ulcers [40]. The mathematical methods developed here can be
used to optimize both pull and push Halbach designs, and
examples for both cases are presented.

Thus the focus of the work described in this article is the
optimal design of permanent magnet Halbach arrays for maxi-
mally pulling in, and pushing away, magnetizable particles for
longer-reach magnetic drug delivery. In contrast to gradient
descent [41] or machine-learning-type optimization methods
[42], which can get caught in local optima [41,43], the solutions
presented here are globally optimal. In standard fashion [44],
global optimality is proved by first finding rigorous upper and
lower bounds for the optimized metric (which here is the
magnetic force). These upper and lower bounds bracket the true
optimal value. For all the cases tested, the upper and lower
bounds converged thus squeezing the range of optimal solutions
to a single value between them (the global optimum).

The optimization proceeds as follows. The Halbach design
problem can be stated from physical first principles as a non-
convex constrained quadratic optimization, and this problem can
be converted into an equivalent linear constrained optimization
by a change of variables. Relaxing one constraint yields a new
problem, now convex, whose solution is an upper bound for the
original non-convex constrained quadratic problem. This type of
constraint relaxation technique is known as semidefinite relaxa-
tion (SDR) [45] and it provides a rigorous upper bound — the
relaxed-constraints optimum is guaranteed to provide a greater
force than (i.e. an upper bound on) the globally-optimal Halbach
array because it does not have to meet all the constraints (one of
which has been relaxed away, see Section 5). A lower bound is
extracted from the upper bound matrix solution of the SDR
problem by shrinking the solution matrix eigenvector with the
Uniformly
magnetized

(0.8 T) magnet

5 cm

Fig. 1. (a) Magnetic drug delivery has been limited to 5 cm depths in human trials [1,9

forces using the same magnetic field strengths by optimally shaping the magnetic field
maximum eigenvalue so that a new solution matrix does satisfy
all the linear constraints. This yields a solution that satisfies the
change-of-variable constraints but that is sub-optimal and there-
fore provides a rigorous lower bound. The lower bound is then
increased by optimizing a modified convex function that approx-
imates the original non-convex quadratic problem. As the opti-
mization proceeds, specific Halbach magnet configurations are
found, each creating a specific but sub-optimal magnetic force
(see open circles in Fig. 2). The final design (closed black circle) is
squeezed between the lower and upper bounds and is guaranteed
to be the globally optimal solution — the best possible Halbach
design.

Most magnetic drug targeting systems [33,34,46,47], have
relied on pull forces generated by a single permanent magnet
placed near the target tissue. Recently, magnet shaping has been
employed in the design of permanent magnets [48,49] and
electromagnets [35,36,50] to improve magnetic gradients and
thus enhance pull forces. Halbach arrays for near surface mag-
netic focusing have been demonstrated in [28,51]. To attain
longer reach, one of the more notable Halbach magnet optimiza-
tions is the Stereotaxis’ Niobes system to maximally project
magnetic forces [52,53] — a design that has allowed for the
steering of catheters and guide wires during magnetically assisted
heart surgery. Implanting of magnetic materials inside patients –
within, for example, blood vessel walls – has been proposed in
[7,54,55] as an alternate way to target drugs to deep tissues.
The implanted materials serve to locally increase the magnetic
field gradients when an external magnetic field is applied. Finally,
superconducting materials have also drawn interest from the
research community for the generation of stronger magnetic
forces [25,56–59]. However, there are as yet no methods to
optimize permanent magnet Halbach arrays to maximize the
strength and depth of magnetic pull and push forces. We consider
that problem here and design optimal arrays with a reasonable
number of elements (36 for all the cases below). Construction of
strong Halbach arrays with this many elements is feasible, as has
been demonstrated for 1 T arrays with 36 elements in [60].

Since prior human trials have been restricted to a focusing
depth of 5 cm [1,9], and since generating sufficient force at depth
remains a challenge [7,54,55,61], we choose as a specific goal
throughout this paper to increase magnetic forces at a depth.
To make the problem concrete, we choose to optimize force at 10 cm
for Halbach designs with a total volume of 2000 cm3, 36 elements,
deep
tumor

Longer
reach

Optimal
Halbach array,

same safe strength
but deeper forces

] (photograph taken from [37]). (b) Halbach arrays could create deeper magnetic

(gray arrows show sample magnetization direction in each element of the array).



Fig. 2. Global optimality is proved by showing that the upper and lower bounds converge, squeezing the optimum design between them. The figure shows upper and

lower bounds, as well as the sub-optimal and final optimal force value, for the Halbach optimization case of Section 6.1. At each iteration of the optimization, it is known

that the true optimum magnetic force must be less than the upper bound (red line, computed by SDR) and greater than the lower bound (blue line, computed by an

approximate convex optimization scheme). As the optimization proceeds, better and better solutions are found, and the bounds are driven closer together eventually

converging (here at iteration 4). The shown global optimum (black dot) corresponds to a 36 Element Halbach array that creates a magnetic force at a distance of 10 cm that

is 71% greater than the force created by a uniformly magnetized block of the same size and magnetic field strength. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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and each element having a remanence of r1 T — a size, strength,
and number of elements that is feasible to construct. Maximizing
pull force at one specific depth also increases forces at surround-
ing locations (it is not the case that maximizing force at 10 cm
leads to a decreased force at 7 cm), and the optimization methods
presented here can be trivially extended to optimize the
force over a region instead of at a point. For push forces, there
is usually a location we want to push at (e.g. through the round
window membrane that leads into the inner ear [38]) and so it
makes sense to optimize push at that specific location. The
optimization leads to designs that substantially outperform uni-
formly magnetized magnets of the same size, shape, and magnetic
field strength.

Specifically, a 2-dimensional flat rectangular 20 cm�20 cm�
5 cm (2000 cm3 volume) Halbach optimal design with 36
elements created a 1.45� greater force at a 10 cm distance
compared to a benchmark uniformly magnetized magnet of the
same size, shape, and strength (Fig. 6). The method worked
equally well for optimizing Halbach arrays of non-rectangular
shapes and, as an example, was demonstrated for a ‘C’ shaped
2-dimensional array (Fig. 7). Such a ‘C’ design could be useful for
placing the Halbach system around an obstruction, for example
around a large tumor that both protrudes out of and extends
deeper into the body.

For magnetic push designs, a 36 element optimized Halbach
array was compared against a 2-element push magnet benchmark
(since no single element alone can push) and created a force that
is 9� greater at a distance of 10 cm (Fig. 11). This is directly
relevant for optimizing magnetic injection forces to deliver
therapy into the inner ear [38], which is at a distance of
6–10 cm from the surface of the human face. The same optimiza-
tion methods also worked for optimizing 3-dimensional Halbach
designs, for both pull and push scenarios (as shown in Section 7,
Figs. 12 and 13).

We were also able to extend our techniques to optimize the
shape of Halbach arrays. Instead of choosing a prescribed shape,
like a ‘C’ shape of Fig. 7 or the rectangle shape of Fig. 1a, and then
finding optimal magnetization directions for each element within
that shape, we were able to find the optimal placement of the
elements. This was done by including one additional constraint in
the optimization that effectively selected the N best placed
elements from a larger grid of M elements thus revealing the
optimal shape (see the end of Section 5), and this was done in
both 2 and 3-dimensions, for both pull and push. Three-dimen-
sional, 36 element, 2000 cm3 volume Halbach designs, with both
optimal element placement and magnetization directions, are
demonstrated in Figs. 12 and 13, and they create push and pull
forces at a 10 cm distance that are 5� and 26� greater than the
benchmark magnets of the same volume and strength.

Finally, to check that our optimal Halbach designs are prac-
tical, we considered a 51 error in magnetization directions, as
would be reasonable during array fabrication. We found that the
push and pull forces are sufficiently insensitive to these manu-
facturing errors for the designs to remain practical (see Section 8).
2. Physics for magnetic fields and forces

To design the Halbach arrays, we need to quantify the
magnetic fields and forces they create. Magnetic fields are
described by Maxwell’s equations [62]. Since the designs dis-
cussed here utilize stationary permanent magnets, the magneto-
static equations are appropriate. These are

r � H
,
¼ j

,
ð1Þ

B
,
¼ m0ðH

,
þM

,
Þ ¼ m0ðH

,
þwH

,
Þ ð2Þ

rUB
,
¼ 0 ð3Þ

where B
,

is the magnetic field [in Tesla], H
!

is the magnetic
intensity [A/m], j

!
is the current density [A/m2] and is zero in

our case, M
!

is the material magnetization [A/m], w is the magnetic
susceptibility, and m0¼4p�10�7 N/A2 is the permeability of a
vacuum. These equations hold true in vacuum as well as in
materials (air or liquid), and for electromagnets and permanent
magnets (magnetization M

!
a0). The resulting force on a single

ferro-magnetic particle is then

F
,

M ¼
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3
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where a is the radius of the particle [m], r is the gradient
operator [with units 1/m], and @H

,
=@ x
!

is the Jacobian matrix of
H
,

both evaluated at the location of the particle [7,63–65]. The first
relation states that the force on a single particle is proportional to
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its volume and the gradient of the magnetic field intensity
squared — i.e. a ferro-magnetic particle will always experience
a force from low to high applied magnetic field. The second
relation, which is obtained by applying the chain rule to the first
one, is more common in the magnetic drug delivery literature and
shows that a spatially varying magnetic field (@H

,
=@x

,
a0) is

required to create a magnetic force. Thus, in order to maximize
the force experienced by a given particle, the gradient of the
magnetic field squared must be maximized. This is the only term
controlled by the magnet design; all other terms depend on the
size and material properties of the particles.
3. Problem formulation

Consider a Halbach array composed of permanent rectangular
sub-magnets arranged in a rectangular formation, each magne-
tized uniformly in a given direction. The optimization task is to
select the magnetization directions to maximize pull or push
forces on particles located at a specific distance from the magnet.
Fig. 3 shows a schematic of a 2-dimensional Halbach array
sample. As illustrated, the goal is to choose the optimal magne-
tization directions (indicated by the blue arrows) to maximize the
pull or push magnetic force at (x0,y0). Deep reach can be
optimized by maximizing the pull or push forces at a (x0,y0)
location far from the Halbach array.

If the strength of the Halbach array is unrestricted, then the
magnetic force can be increased simply by making the magnets
stronger. However, there are practical constraints on the available
strengths of permanent magnets as well as regulatory safety
constraints on the strength of the magnetic field that can be
applied across the human body (the United States Food and Drug
Administration currently considers 8 T fields safe for adults and
up to 4 T appropriate for children [66]). Thus the desired optimi-
zation problem is to maximize the magnetic force given a
maximum allowable magnetic field strength. For convenience,
and since permanent NdFeB magnets can be purchased with
remanence magnetization of around 1 Tesla, we limit the magne-
tization of each Halbach element to 1 T.

The magnetic field around a uniformly magnetized rectangular
magnet is known analytically. Here the analytical expression
developed by Herbert and Hesjedal [67] is used to express the
magnetic field around a Halbach array with sub-magnets having
arbitrary magnetization directions. The magnetic field from two
or more magnets can be added together to establish the net
magnetic field. This is a standard assumption in the design of
Halbach arrays [31], and it is true as long as the magnetic field
arising from the combination of sub-magnets does not cause
partial or complete demagnetization or magnetization reversals
[68]. The designs we present in this paper do not generate
demagnetizing fields strong enough to cause partial or complete
demagnetization of the sub-magnets involved.
Fig. 3. Schematic of Halbach array of N magnets arranged in rectangle formation. Each

directions. The goal is to find the angle y for each sub-magnet in order to maximize th

colour in this figure legend, the reader is referred to the web version of this article.)
Let A
!
ðx,yÞ represent the analytical expression for the magnetic

field around a rectangular magnet that is uniformly magnetized

along the positive horizontal axis, and let B
!
ðx,yÞ represent the

analytical expression for the same magnet uniformly magnetized
along the positive vertical axis. Then the magnetic field when this

magnet is uniformly magnetized at an angle y is given by

A
!
ðx,yÞcosyþ B

!
ðx,yÞsiny. The magnetic field around the entire

Halbach array is generated by translating and adding together
solutions for all the elements. For the ith Halbach element at
location (ai,bi), with (as yet unspecified) magnetization direction

yi, let ai¼cos yi and bi¼sin yi. The magnetic field created at
location (x0,y0) by this element is

H
!

iðx0,y0Þ ¼ ai A
!
ðx0�ai,y0�biÞþbi B

!
ðx0�ai,y0�biÞ ð5Þ

The coefficients ai and bi are the unknown design variables. In
order to limit the strength of any given element to 1 Tesla, the
constraint ai

2
þbi

2r1 is imposed for all i. For a Halbach array
containing N sub-magnets, the expression for the magnetic field
at point (x0,y0) is

H
!
ðx0,y0Þ ¼

XN

i ¼ 1

ai A
!
ðx0�ai,y0�biÞþbi B

!
ðx0�ai,y0�biÞ ð6Þ

The relationship between the design variables ai and bi and the
magnetic force exerted by the Halbach array at point (x0,y0) is
quadratic in the variables ai and bi. According to Eq. (4), the
strength of the magnetic force experienced by a magnetic particle
at a point (x0,y0) is directly proportional to the gradient of the
square of the magnetic field at that point. Define

A
!

i : ¼ A
!
ðx0�ai,y0�biÞ ð7Þ

and

B
!

i : ¼ B
!
ðx0�ai,y0�biÞ ð8Þ

Squaring Eq. (6) and taking the gradient, the expression for
rH
!2

ðx0,y0Þ becomes

rH
!2

ðx0,y0Þ

¼r
XN

j ¼ 1

XN

i ¼ 1

ðaiaj A
!

iU A
!

jþaibj A
!

iU B
!

jþbiaj B
!

iU A
!

jþbibj B
!

iU B
!

jÞ

0
@

1
A
ð9Þ

The gradient operator r is linear. Since the coefficients ai and
bi are not functions of x and y they can be pulled out of the
summation. The resulting Eq. (10) shows how the magnetic force
of Eq. (4) depends on the Halbach array design variables ai and bi:

rH
!2

ðx0,y0Þ ¼
XN

j ¼ 1

XN

i ¼ 1

ðaiajrð A
!

iU A
!

jÞþaibjrð A
!

iU B
!

jÞ

þbiajrð B
!

iU A
!

jÞþbibjrð B
!

iU B
!

jÞÞ ð10Þ
green box represents a sub-magnet. The blue arrows show possible magnetization

e push or pull force at the location (x0,y0). (For interpretation of the references to
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The Halbach array optimization problem can now be stated in
matrix form. The goal is to maximize magnetic pull or push forces
along the horizontal axis and, thus, the focus is solely on the

horizontal component of rH
!2

ðx0,y0Þ, i.e. ðrH
!2

ðx0,y0ÞÞx : ¼

rH
!2

ðx0,y0ÞUð1,0Þ. Define the matrix P as

P : ¼

ðrðA1UA1ÞÞx � � � ðrðA1UANÞÞx ðrðA1UB1ÞÞx � � � ðrðA1UBNÞÞx

^ & ^ ^ & ^

ðrðANUA1ÞÞx � � � ðrðANUANÞÞx ðrðANUB1ÞÞx � � � ðrðANUBNÞÞx

ðrðB1UA1ÞÞx � � � ðrðB1UANÞÞx ðrðB1UB1ÞÞx � � � ðrðB1UBNÞÞx

^ & ^ ^ & ^

ðrðBNUA1ÞÞx � � � ðrðBNUANÞÞx ðrðBNUB1ÞÞx � � � ðrðBNUBNÞÞx

0
BBBBBBBBB@

1
CCCCCCCCCA
ð11Þ

and define the vector q
!

as a concatenated list of the design

variables ai and bi as

q
!T

: ¼ ða1,. . .,aN ,b1,. . .,bNÞ
T

ð12Þ

Now ðrH
!2

ðx0,y0ÞÞx can be written in a compact form as

ðrH
!2

ðx0,y0ÞÞx ¼ q
!T

P q
!

ð13Þ

This equation succinctly states how the horizontal magnetic
force strength depends on the Halbach design variables. To
include the ai

2
þbi

2r1 magnetization constraints, let Gi be a
2N�2N matrix having unity at the locations (i,i) and (Nþ i,Nþ i),
and with zeros everywhere else. Then the element magnetization
constraints can be written in matrix form as

q
!T

Gi q
!r1 ð14Þ

for all i, The force optimization problem can, therefore, be stated
as follows: maximize (for push) or minimize (for pull) the

quadratic cost q
!T

P q
!

of Eq. (13) subject to the N constraints of
Eq. (14), one for each Halbach element (for i¼1, 2, y, N).
4. Problem solution

The quadratic optimization problem formulated in the last section
(also referred to as a quadratic program) can be solved using various
methods. It is not convex – the matrix P is not necessarily negative or
positive semi-definite – which implies that it can have many local
optima and hence a globally optimal solution cannot be guaranteed in
general. Much of the literature on non-convex quadratic program-
ming has focused on obtaining good local minima, using non-linear
programming techniques [69] such as active-set or interior-point
methods [70]. Numerous general-purpose optimization techniques
can also be tailored to solve quadratic programs. A review of several
optimization methods for non-convex quadratic programs can be
found in [71,72]. Some machine learning methods – such as those
based on neural networks [42] – have also been used to solve this
class of problems. However, for non-convex problems, these methods
often get stuck in local optima [41,43].

We employ a combination of 2 methods to find the optimal
solutions and determine the upper and lower bounds for the
optimal force: (1) semi-definite relaxation [73] and (2) the
majorization method [74]. Rigorous bounds provide information
on the quality of the optimal solution. If, for example, it is known
that the maximum achievable force is guaranteed to be between
FL and FU, and the found optimum has a force F in the top range of
the bracket close to FU, then the found solution is a high quality
optimum close to the true (global) maximum. If, as in Fig. 2, and
as occurs for all the Halbach optimization cases in this paper, the
two bounds converge, then we additionally know for certain that
a global optimum has been achieved.
To find the upper bound for a maximum push (or pull) force,
semi-definite relaxation (SDR) [73] is employed. This method
converts the original non-convex quadratic problem into a closely
related convex problem by a change of variables and a constraint
relaxation. Finding a solution to the new SDR problem is much
easier, is numerically more efficient, and a global optimum to the
relaxed, changed-variables problem is guaranteed [73]. The global
optimum of the relaxed SDR problem is an upper bound for the
global optimum of the original non-convex quadratic problem
(this upper bound is illustrated as the red line in Fig. 2).

To compute the lower bound, re-scaling the above SDR solution to
satisfy the constraints yields a solution, a magnet design, that satisfies
all the constraints but that is sub-optimal (the first open circle at
iteration 1 in Fig. 2) — this solution is a lower bound for the global
optimum of the original non-convex quadratic program (bottom most
dashed gray line). The scaled sub-optimal solution can then be
improved by optimizing a convex function that approximates the
original non-convex cost function. The solution to this approximate
constrained convex problem leads to an improved sub-optimal
solution (second open circle in Fig. 2) and provides a tighter lower
bound (higher dashed gray line). The next iteration yields a third sub-
optimal solution and a better third lower bound. The process repeats
until no further improvement is possible or until the lower bound
reaches the upper bound proving that a global optimum of the
original problem has been found.

Below we first discuss the mathematical details of the relaxed–
constraint convex SDR process and the upper bound that it yields.
Then we describe the iteration of approximate convex problems that
gives a succession of sub-optimal solutions and improved lower
bounds. When these lower bounds converge to the upper bound the
last solution is guaranteed to be the global optimum Halbach design.

The mathematics is presented for optimizing push. Maximizing
pull proceeds in exactly the same way except that the cost function

q
!T

P q
!

is replaced by its negative� q
!T

P q
!

and this oppositely signed
function is then minimized. The conversion from the original non-
convex problem to a convex matrix problem is achieved by a change
of variables. The SDR corresponding to the original optimization
problem of Eqs. (13) and (14) can be re-stated as follows. The P and
Gi matrices are symmetric. For symmetric matrices

q
!T

P q
!
¼ Trð q

!T
P q
!
Þ¼ TrðP q

!
q
!T
Þ ð15Þ

q
!T

Gi q
!
¼ Trð q

!T
Gi q
!
Þ¼ TrðGi q

!
q
!T
Þ ð16Þ

where the trace operator Tr( � ) is the sum of the elements on the
main diagonal of a square matrix. Define the new matrix variable

Q : ¼ q
!

q
!T

as the outer product of the q
!

vector with itself. This
recasts the cost and constraints into linear functions of Q

q
!T

P q
!
¼ TrðPQ Þ ð17Þ

q
!T

Gi q
!
¼ TrðGiQ Þ ð18Þ

however, not all Q’s are permissible. Only Q matrices that can be

formed by the outer product of a single vector, i.e. of the form Q :

¼ q
!

q
!T

should be considered, and this is the set of matrices that are
positive semidefinite (QZ0) with unit rank [75]. Thus the optimiza-
tion can be rephrased as maximize or minimize Tr(PQ) subject to the
Nþ2 constraints: Tr(GiQ)r1 for i¼1,2, y N; QZ0; and rank(Q)¼1.
The cost and the first Nþ1 constraints are convex in Q [45]. However,
the last rank constraint is not convex. If this rank constraint is
removed then the problem becomes convex and a global optimum
can be readily found. Removing the rank constraint allows a wider

choice of Q solutions: it includes the Q : ¼ q
!

q
!T

case but also allows
other solutions that are not the outer product of a single vector. Thus
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the cost attained by solving this new convex problem is guaranteed to
match or exceed the cost that can be achieved for the original non-
convex constrained quadratic problem – if Q* is the global optimal
solution to the relaxed convex problem with achieved cost Tr(PQ*),

and q
!n

is the (still unknown) global solution to the original quadratic
problem of Eqs (13) and (14), then it is guaranteed that

q
!nT

P q
!n

rTrðPQn
Þ. Thus TrðPQn

Þ is an upper bound to the true
global optimum (it is the red line in Fig. 2).

The optimal solution Q* of the relaxed convex problem also
provides a lower bound to the true global optimum after an

appropriate rescaling. Let v
!n

be the eigenvector of Q* that has the

maximum eigenvalue. In order for v
!n

to qualify as a sub-optimal
feasible solution to the original non-convex quadratic problem, it

must satisfy the N constraints v
!nT

Gi v
!n

r1 for all i¼1, 2, y, N. Let t

be the maximum value that the expression v
!nT

Gi v
!n

achieves for all

i, so define t : ¼max
i
ð v
!nT

Gi v
!n

Þ. By definition v
!nT

Gi v
!n

rt for all i.

Now let q
!

# : ¼ v
!n

=
ffiffiffi
t
p

then q
!

#

T
Gi q
!

# : ¼ ð v
!nT

=
ffiffiffi
t
p
ÞGið v
!n

=
ffiffiffi
t
p
Þ

r1 so that this new scaled vector q
,

# satisfies the N constraints

q
!

#

T
Gi q
!

#r1 for all i¼1, 2, y, N. It is therefore a feasible sub-
optimal solution to the original non-convex quadratic program. A
sub-optimal solution cannot beat the maximum possible pull or push
force and is therefore a guaranteed lower bound to the original

problem, i.e. q
!nT

P q
!n

Z q
!

#

T
P q
!

#. This first lower bound is shown
by the lowest dashed gray line in Fig. 2.

The task now is to improve the lower bound. Any vector q
!

that
satisfies the constraints of the original problem yields at least a sub-
optimal solution, and hence provides a lower bound to the optimal
magnetic force. In order to further improve the lower bound achieved
by q

,

#, the original quadratic problem is approximated with a convex
function without relaxing any constraints. This convex function is
formulated in such a way that optimizing it also produces an optimal
(but possibly local) solution to the original quadratic problem.

To define this new convex function, we proceed as follows.

Note that maximizing q
!T

P q
!

is equivalent to minimizing

f ð q
!
Þ : ¼� q

!T
P q
!

. Define the new function Fð q
!
Þ, which is called

the convex quadratic majorizer [74] of f ð q
!
Þ at q

,

#, as

Fð q
!
Þ : ¼ f ð q

!
#Þþð q
!
� q
!

#Þ
Trf ð q
!
Þ9

q
!

#

þlð q!� q
!

#Þ
T
ð q
!
� q
!

#Þ ð19Þ

where r denotes the gradient operator with respect to q
,

,

rf ð q
!
Þ9

q
!

#

is the gradient of f ð q
!
Þ with respect to q

,
and then
Fig. 4. Design of Halbach array with optimal shape and magnetization. Step 1: conside

then find the N most significant sub-magnets that maximize the force (push or pull) at

that the force (push or pull) is maximized at (x0,y0).
evaluated at q
,

#, l¼max½0,lmaxðPÞ�, and lmax(P) denotes the
maximum eigenvalue of the matrix P. That the function F is a

convex quadratic majorizer of f at q
,

# means that f ð q
!
ÞrFð q

!
Þ for

all q
,

, and f ð q
!
Þ¼Fð q
!
Þ for q

,
¼ q

,

# [74]. If q
,

## minimizes F, then we

have the sandwich inequality f ð q
!

##ÞrFð q
!

##ÞrFð q
!

#Þ ¼ f ð q
!

#Þ.
The first inequality shows that minimizing F implies decreasing

the value of the objective function f ð q
!
Þ, which is equivalent to

increasing the value of q
!T

P q
!

.

Unlike f, the function F is convex in q
,

because f ð q
!

#Þ is a

constant offset, ð q
!
� q
!

#Þ
Trf ð q
!
Þ9

q
!

#

is linear in q
,

, and

lð q!� q
!

#Þ
T
ð q
!
� q
!

#Þ is purely quadratic with lZ0. Thus the

new approximate problem: minimize Fð q
!
Þ subject to the same

constraints as the original problem q
!T

Gi q
!r1 for i¼1, 2, y, N, is

convex and its global optimum q
!

## can be found. Since F is only

an approximation to the true cost f ¼� q
!T

P q
!

, its global opti-
mum is a feasible but sub-optimal solution of the original non-
convex problem. As such, it provides the next lower bound

q
!nT

P q
!n

Zq
,T

##Pq
,

##. This second lower bound is shown as the

second dashed blue line in Fig. 2. At the next iteration, q
!

# is

replaced by q
!

## in F of Eq. (19), a new sub-optimal solution q
!

###

is found, and the process repeats until the lower bound cannot be
improved any further. In Fig. 2 this occurs at the 4th iteration, and

the final Halbach array design vector q
,n

¼ q
!

#### has a lower

bound that achieves the upper bound proving that q
,n

¼ q
!

#### is a
global optimum of the original non-convex constrained optimiza-
tion problem — it is the best possible solution of the Halbach
design problem posed in Fig. 3 and Eqs. (13) and (14).

In addition to optimizing magnetization directions for a fixed
Halbach array shape (as in Fig. 3 for a rectangular array), it is also
possible to use the same methods to choose optimal array shapes.
The additional key idea is simple and is shown in Fig. 4. Suppose we
want to design an optimal Halbach array, in shape and magnetization
directions, using only N magnets. A grid of M magnets is considered
where M4N and an optimization is used to determine the sub-set of
N magnets that are most significant—this determines the shape of the
array (step 1 in the figure). The second step is to then re-compute the
optimal magnetization directions for this shape. Together, this finds a
magnet design that has both the best shape and the best magnetiza-
tion directions for a specified magnet volume (equivalently for a
restricted number of magnet elements).
r M sub-magnets arranged in a rectangular shape larger than the desired magnet,

(x0,y0). Step 2: Given these N sub-magnets, find their respective magnetization so
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Mathematical formulation of Step 1, to select the best N out of
M elements, is very similar to what has already been done. The
new part is to effectively restrict the number of elements to just
N, and this can be done by adding a single new constraint. As
before, we maximize (for push) or minimize (for pull) the

quadratic cost q
!T

P q
!

, as shown in Eq. (13), but now for M

(4N) sub-magnets. Hence we state M constraints q
!T

Gi q
!r1

(for i¼1,2,y, M) as we still want to limit the strength of each
element to 1 T. One additional constraint effectively restricts the
number of magnets back to only N by requiring the sum of the

squares of all the design variables ai and bi to be less than N, i.e.,PM
i ¼ 1 a2

i þb
2
i rN. Dividing by N, this new constraint can be

written in the matrix form (remember that the vector q
!

now
Fig. 5. Benchmark magnet. Schematic showing the axis system and chosen

optimization location for a benchmark uniformly magnetized rectangular magnet

with height h¼20 cm, width w¼20 cm, and thickness t¼5 cm. The optimization

point is located at x¼10 cm, y¼h/2 cm, and z¼t/2 cm. This magnet is used as a

benchmark for both the 2D and 3D pull design cases.
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gradient to the optimization point to create a maximum force. (For interpretation of the

of this article.)
has a length of 2M) as

q
!T 1

N
G

� �
q
!r1 ð20Þ

where G is the identity matrix of size 2M. When this optimization
is solved as before, we select the N sub-magnets with the greatest
values of ai

2
þbi

2 to conclude step 1. Then step 2 proceeds exactly
as before except now the rectangular arrangement of elements in
Fig. 3 is replaced by the new arrangement of array elements
determined in step 1. The end result is both an optimal array
shape and element magnetization directions.
5. Optimized 2D Halbach array designs

In this section we begin to show the results of the optimization
methods. We start with arrays of a fixed shape (no shape
optimization yet) and present various designs of optimized
2-dimensional Halbach arrays for maximum pull and push force
objectives. In line with the problem formulated in Section 4, it is
assumed that the array elements can only be magnetized in the xy

plane. Magnetization along the z-axis is set to zero. In all of the
designs presented, the force is optimized at a distance of 10 cm
from the edge of the array. This allows for meaningful compar-
isons to be made. Various designs to achieve maximum pull forces
are discussed first.

5.1. Maximum pull force designs

Maximizing the pull force translates to minimizing the hor-
izontal force, making it as negative as possible. Since the goal is to
see if the optimized Halbach arrays can perform better than a
simple uniformly magnetized magnet, for example as used in
[47], all designs are benchmarked against such a rectangular
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ours) and Direction Vectors
H units A/m]

orm pull)=1.45

7.9
8.1
8.3
8.5
8.7
9.0
9.3
9.6
9.9
10.2
10.4
10.7
11.0
11.3
11.6
11.9
12.2
12.4
12.7
13.0
13.3

t and the black arrow shows the direction of the pull force at that point. The color

a light to medium orange contour of 10.2 corresponds to :H:¼1010.2 A/m). The

array to the pull force from the benchmark uniform magnet of Fig. 5. Each element
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magnet of the same size and 1 T magnet strength. Considering a
benchmark magnet of 20 cm height, 20 cm width, and 5 cm
thickness, the reference point (the desired point for optimizing
the force in a Halbach array of the same dimensions) is chosen at
a horizontal distance of 10 cm from the vertical right edge of the
magnet (as shown in Fig. 5).

Recall that the magnetic force (pull or push) is proportional to
the horizontal component of the gradient of the magnetic field
squared: ðrH

!2

ðx0,y0ÞÞx. The benchmark rectangular magnet has
ðrH
!2

ðx0,y0ÞÞx¼–4.39�1010 A2/m3, with the negative sign indi-
cating a pull force.

Fig. 6 illustrates the optimal magnetization directions for a
planar 36 element Halbach array with the same overall shape
(rectangle) and volume as the benchmark magnet of Fig. 5. The
force was optimized at a point 10 cm away from the right most
face of the array. The pull force generated by this optimal
2-dimensional Halbach design is 1.45� more than that generated
by the benchmark uniform magnet of the same strength and
volume. The optimization to determine this design took 4 min to
run on a computer with an Intels CoreTM i7 processor with 8 GB
RAM using MATLAB version 7.9.0.

Next we show that the optimization method works equally
well for other pre-determined shapes besides a rectangle. As an
example, we consider a ‘C’ shape with the same volume as the
benchmark magnet shown in Fig. 5 and again optimize with 36-
elements (again of identical size) the pulling force at a distance of
10 cm. Such a ‘C’ shape could be appropriate for placing a Halbach
array around a protrusion from the body such as a large tumor
that extends out of as well as into the body. The optimal ‘C’ array
shown in Fig. 7 generates a pull force that is 2.16� more than
that generated by the uniformly magnetized benchmark magnet,
and it enables a 49% improvement in force over the optimal
rectangular array of Fig. 6 demonstrating that array geometry can
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Fig. 7. Optimal magnetization directions for a ‘C’-shaped 36 element Halbach

array. The coloring scheme here is the same as in Fig. 6. The magnetizations of the

block on the left fan in to concentrate the magnetic field and its gradient at the

optimization point, whereas the blocks on the top and bottom provide a flux

return and add to the horizontal component of the force. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
play a significant role in improving magnetic forces. This case also
took 4 min to run on the same computer (Intels CoreTM i7
processor, 8 GB RAM using MATLAB version 7.9.0).

Fig. 8 illustrates both the optimal shape and magnetization
directions for a planar 36 element Halbach array with the same
volume as the benchmark magnet of Fig. 5. To find the optimal
placement of the 36 elements, a grid of M¼18�18¼324
elements was considered, and the 36 most significant elements
were chosen by the optimal element selection method described
earlier. The force was optimized at a point 10 cm away from the
right most face of the array. The pull force generated by this
optimal 2-dimensional Halbach design shown in Fig. 8 is 1.71�
more than that generated by the benchmark uniform magnet of
the same strength and volume. This case took 17 min to optimize.

5.2. Maximum push force designs

Although a single magnetic element will always attract nano-
particles towards itself, a correct arrangement of just two elements
can push – and thus magnetically inject – particles. Magnetic
pushing is useful for a variety of clinical applications such as
magnetically injecting therapy into wounds, infections, or inner ear
diseases [38]. Pushing works by creating a magnetic cancellation
node at a distance. Magnetic forces then radiate outwards from
that cancellation causing a push force on the far side of the node
(see [38] for details). As for pull applications, there is a need to
optimize magnet arrangements to reach deeper, push harder, and
to do so with shaped arrays that can be fit around obstructions or
minimized in size so that they can be inserted into confined spaces.

Maximizing push is equivalent to maximizing the cost func-
tion of Eq. (13). (For pull we minimized this function.) It is not
possible to benchmark pushing against a single uniformly mag-
netized magnet, since such a single element will always pull
particles towards itself. Instead the push designs are bench-
marked against a minimal Halbach array consisting of just two
rectangular magnets, one on top of the other (see Fig. 9), with a
remanence of 1 T each. The overall dimensions of the array are the
same as that of the benchmark pull magnet shown in Fig. 5
(w¼20 cm, h¼20 cm, and t¼5 cm). For this 2-element push

benchmark we have ðrH
!2

ðx0,y0ÞÞx¼þ2.94�108 A2/m3 at a dis-
tance of 10 cm with the positive sign indicating the push force.

Fig. 10 illustrates the optimal magnetization directions for a planar
36 element Halbach array with the same overall shape (rectangle)
and volume as the benchmark push array of Fig. 9. The force was
optimized at a location 10 cm away from the right most face of the
array. The push force generated by this optimal 2-dimensional
Halbach design shown in Fig. 10 is 4.81� more than that generated
by the benchmark push array of same magnetic field strength and
volume. This case took 4 min to run on the computer as before.

Next we show optimization of both element placing and
magnetization directions for maximal pushing at a 10 cm dis-
tance. We consider a 36 element array of the same strength and
volume as the push benchmark magnet of Fig. 9. To find the
optimal shape, the optimization selected N¼36 most significant
elements from a grid of M¼18�18¼324 elements. The optimal
array is shown in Fig. 11 and generates a push force that is more
than nine times that of the benchmark array of the same strength
and volume. This case took 17 min to evaluate.
6. Optimized 3D Halbach arrays

The previous optimization results were stated in 2 spatial dimen-
sions only. We now consider optimizing 3 dimensional arrays. The
mathematics remains the same: the problem statement of Section 4
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w¼3.33 cm, and t¼5 cm. The factor ‘d’ is the ratio of the push force for this optimal array versus the benchmark 2-element array. The coloring scheme is the same as used

in Fig. 6. The elements closer to the optimization point orient to induce a cancellation node, while the rest align to extend magnetic field and its gradient beyond the

cancellation node to generate a maximal push force.
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Fig. 11. Optimal shape and magnetization for a 36 element push Halbach array

with the same volume as the benchmark array of Fig. 9. Here the shape

optimization has selected elements closest to the optimization point but in two

separate halves. The 8 most-central elements orient to induce a cancellation node,

while the rest fan-in to focus the magnetic field and its gradient beyond the

cancellation node in order to generate the strongest push force. The factor ‘d’ is the

ratio of the push force for this optimal array versus the benchmark 2-element

array. The coloring scheme is the same as used in Fig. 6. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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readily generalizes to the 3rd dimension, and is still solved as
described in Section 5. Geometry can now be optimized in three
dimensions, and each sub-magnet element can be magnetized by a
vector that has components in all three directions. As before, in all of
the 3-dimensional designs the force is optimized at a distance of
10 cm from the face of the array to allow for meaningful comparison
with the associated 2-dimensional cases.

6.1. Maximum pull force design

A pull force optimization is carried out for a 36 element (each
element a cube) 3 dimensional Halbach array having the same
overall volume as that of the benchmark magnet of Fig. 5. To find
the optimal shape, the optimization selected the N¼36 most
significant elements from a grid of M¼3�10�10¼300 ele-
ments. As the elements farther away from the optimization
location are less significant, only 3 layers were picked along the
horizontal axis for the grid. The optimal array shape is shown in
Fig. 12. The force generated by this design at the optimization
point is about 5 times greater than that generated by the bench-
mark magnet shown in Fig. 5. The added degrees of freedom along
the z-axis, therefore, provide significant improvement in the
design of Halbach arrays for pull force applications. This case
took 1 h and 43 min to run on the same computer as previously
(Intels CoreTM i7 processor, 8 GB of RAM, using MATLAB version
7.9.0).

6.2. Maximum push force design

Comparable to the 3-dimensional pull force design described
above, a push force optimization is also carried out for a 36 element
(each element a cube) 3-dimensional Halbach array of the same
strength and volume as the push benchmark magnet of Fig. 9. To find
the optimal shape, the optimization selected the N¼36 most



Fig. 12. Plot showing the optimal geometry and magnetization directions for a 36

element 3D Halbach pull array (with the same volume as the benchmark pull

magnet shown in Fig. 5). Each element is a cube with every side measuring

3.816 cm. The two layers of the Halbach array along the x-axis (front layer shown

in green, rear in red) are shown apart to better visualize the magnetization

directions. The overall formation of the array is shown at the top right where the

two layers are right next to each other and the optimization point and resulting

force are shown by the black dot and arrow. The 2-layer ‘‘pyramid’’ shape is again

optimal because the most effective elements are the ones closest to the optimiza-

tion point. Also, as before, the magnetization directions ‘‘fan in’’, like in Fig. 8, to

push out and focus the magnetic field to better include the optimization point.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 13. Plot showing the geometry and magnetization directions for a 36 element

3D Halbach array push design (having the same overall volume as that of the

benchmark Halbach array of Fig. 9). Each sub-magnet is a cube with every side

measuring 3.816 cm. The optimization point and resulting force are shown by the

black dot and arrow. The elements closest to the optimization point orient to

induce a cancellation node like in Fig. 11, while the rest focus to extend the

magnetic field and its gradient beyond the cancellation node in order to generate a

strong push force.
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significant elements from a grid of M¼3�10�10¼300 elements.
The optimal array is shown in Fig. 13. The force generated by this
design at the optimization point is about 26 times greater than that
generated by the benchmark magnet shown in Fig. 9. As seen for the
pull force design, the added degrees of freedom along the z-axis also
provide significant improvement in the design of Halbach arrays for
push force applications. This case took 1 h and 43 min to optimize.
7. Sensitivity analysis of push and pull designs

A sensitivity analysis was carried out to determine how errors
in element magnetization angles will affect the array pull and
push forces. This analysis is included to quantify the effect of
inevitable manufacturing imperfections on the performance of
the arrays. It was found that the pull force designs were robust to
perturbations in magnetization angles. For each pull case, 10
independent runs were carried out to capture the extent of
variations in the forces. Randomly generated perturbations of
up to 51 were introduced in the magnetization angles of each
design, simulating reasonable tolerances and variations in the
manufacturing of Halbach arrays. The resultant pull forces only
showed a variation of 0.3% in magnitude, with a maximum pull
force angle deviation of 0.51 away from the horizontal. This
indicates that the pull designs are quite robust to reasonable
magnetization manufacturing errors.

Push force design is more sensitive to magnetization angle errors.
In a series similar to the one above, 10 independent runs were carried
out for each push force design in order to quantify the variations in
push forces. Randomly generated perturbations of up to 51 were
introduced in the magnetization angles of each design. The resultant
push forces strayed away from the horizontal by up to 41 on average,
and 81 in the most extreme cases. However, the magnitude of forces
along the horizontal axis exhibited a maximum decrease of only 0.8%.
In contrast, the magnitude of forces along the vertical axis (these
were originally zero) rose significantly — to 13.2% of the nominal
magnitude of the horizontal component of the push forces. This was
expected since push relies on a magnetic field cancellation and that
cancellation was anticipated to be more sensitive to magnetization
direction errors, and it implies that more care must be taken in the
manufacturing and arrangement of magnets for push force applica-
tions than for pull cases.
8. Conclusion

Methods based on semi-definite quadratic programming have
been presented to optimize Halbach arrays to maximize push and
pull forces on magnetic particles at depth. These methods provide
rigorous upper and lower bounds on optimality and for all the array
shapes tested; these bounds converged proving that the found
magnetization directions were globally optimal solutions. The opti-
mizations ran in minutes for 2-dimensional arrays, and in less than
2 h for 3D arrays, on a desktop PC using MATLAB. They were
appropriate to maximize either pull or push forces at depth for any
prescribed array shapes. An additional constraint and selection of N

out of M most significant elements further allowed the determination
of the optimal shapes of Halbach arrays, in addition to their optimal
magnetization directions. The presented case study designs should be
feasible to construct (they are in line with previously constructed 36
element 1 T arrays), and were sufficiently insensitive to magnetiza-
tion direction errors even for the more sensitive push cases to remain
practical under anticipated manufacturing errors. These designs
substantially outperformed benchmark magnets of the same size
and magnetic field strength with magnetic push and 3D designs
showing the most benefits. Since depth of treatment is one of the key
limitations for magnetic drug targeting, the presented capabilities
should provide a path towards the construction of safe and practical
Halbach arrays to reach deeper tissue targets and thus enable
magnetic treatment of a wider set of patients.
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